Whiskering homotopies with respect to concatenation
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2024-02-06.
Last modified on 2024-04-17.
module foundation.whiskering-homotopies-concatenation where open import foundation-core.whiskering-homotopies-concatenation public
Imports
open import foundation.universe-levels open import foundation.whiskering-identifications-concatenation open import foundation-core.equivalences open import foundation-core.functoriality-dependent-function-types open import foundation-core.homotopies
Idea
Consider a homotopy H : f ~ g
and a homotopy K : I ~ J
between two
homotopies I J : g ~ f
. The
left whiskering¶
of H
and K
is a homotopy H ∙h I ~ H ∙h J
. In other words, left whiskering
of homotopies with respect to concatenation is a
whiskering operation
(H : f ~ g) {I J : g ~ h} → I ~ J → H ∙h I ~ H ∙h K.
Similarly, we introduce right whiskering¶ to be an operation
{H I : f ~ g} → H ~ I → (J : g ~ h) → H ∙h J ~ I ∙h J.
Properties
Left whiskering of homotopies with respect to concatenation is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-equiv-left-whisker-concat-htpy : {f g h : (x : A) → B x} (H : f ~ g) {I J : g ~ h} → is-equiv (left-whisker-concat-htpy H {I} {J}) is-equiv-left-whisker-concat-htpy H = is-equiv-map-Π-is-fiberwise-equiv ( λ x → is-equiv-left-whisker-concat (H x))
Right whiskering of homotopies with respect to concatenation is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-equiv-right-whisker-concat-htpy : {f g h : (x : A) → B x} {H I : f ~ g} (J : g ~ h) → is-equiv (λ (K : H ~ I) → right-whisker-concat-htpy K J) is-equiv-right-whisker-concat-htpy J = is-equiv-map-Π-is-fiberwise-equiv ( λ x → is-equiv-right-whisker-concat (J x))
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).