Cantor space

Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.

Created on 2022-06-30.
Last modified on 2024-09-23.

module set-theory.cantor-space where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.booleans
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.lawveres-fixed-point-theorem
open import foundation.negation
open import foundation.propositional-truncations
open import foundation.sets
open import foundation.tight-apartness-relations
open import foundation.unit-type
open import foundation.universe-levels

open import set-theory.cantors-diagonal-argument
open import set-theory.countable-sets
open import set-theory.uncountable-sets

open import univalent-combinatorics.equality-standard-finite-types
open import univalent-combinatorics.standard-finite-types

Idea

The Cantor space is the set of functions ℕ → Fin 2. In other words, it is the set of binary sequences.

Definition

cantor-space : UU lzero
cantor-space =   Fin 2

Properties

The cantor space has a tight apartness relation

cantor-space-Type-With-Tight-Apartness : Type-With-Tight-Apartness lzero lzero
cantor-space-Type-With-Tight-Apartness =
  exp-Type-With-Tight-Apartness  (Fin-Type-With-Tight-Apartness 2)

The cantor space is a set

is-set-cantor-space : is-set cantor-space
is-set-cantor-space = is-set-function-type (is-set-Fin 2)

cantor-space-Set : Set lzero
cantor-space-Set = (cantor-space , is-set-cantor-space)

The cantor space is uncountable

is-uncountable-cantor-space : is-uncountable cantor-space-Set
is-uncountable-cantor-space =
  is-uncountable-sequence-discrete-type-diagonal-argument-Cantor
    ( Fin-Discrete-Type 2)
    ( inr star)
    ( inl (inr star))
    ( neq-inr-inl)

Recent changes