Cantor space
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-06-30.
Last modified on 2024-09-23.
module set-theory.cantor-space where
Imports
open import elementary-number-theory.natural-numbers open import foundation.booleans open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.lawveres-fixed-point-theorem open import foundation.negation open import foundation.propositional-truncations open import foundation.sets open import foundation.tight-apartness-relations open import foundation.unit-type open import foundation.universe-levels open import set-theory.cantors-diagonal-argument open import set-theory.countable-sets open import set-theory.uncountable-sets open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.standard-finite-types
Idea
The
Cantor space¶
is the set of
functions ℕ → Fin 2
. In other words, it
is the set of binary
sequences.
Definition
cantor-space : UU lzero cantor-space = ℕ → Fin 2
Properties
The cantor space has a tight apartness relation
cantor-space-Type-With-Tight-Apartness : Type-With-Tight-Apartness lzero lzero cantor-space-Type-With-Tight-Apartness = exp-Type-With-Tight-Apartness ℕ (Fin-Type-With-Tight-Apartness 2)
The cantor space is a set
is-set-cantor-space : is-set cantor-space is-set-cantor-space = is-set-function-type (is-set-Fin 2) cantor-space-Set : Set lzero cantor-space-Set = (cantor-space , is-set-cantor-space)
The cantor space is uncountable
is-uncountable-cantor-space : is-uncountable cantor-space-Set is-uncountable-cantor-space = is-uncountable-sequence-discrete-type-diagonal-argument-Cantor ( Fin-Discrete-Type 2) ( inr star) ( inl (inr star)) ( neq-inr-inl)
External links
- Cantor space at Mathswitch
- Cantor space at Wikipedia
- Cantor space at Lab
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).