Equifibered sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.equifibered-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
An
equifibered sequential diagram¶
over a sequential diagram
(A, a)
consists of a type family B : (n : ℕ) → Aₙ → 𝒰
equipped with a family of fiberwise equivalences
bₙ : (a : Aₙ) → Bₙ a ≃ Bₙ₊₁ (aₙ a) .
The term “equifibered” comes from the equivalent definition as
dependent sequential diagrams
over (A, a)
b₀ b₁ b₂
B₀ ---> B₁ ---> B₂ ---> ⋯
| | |
| | |
↡ ↡ ↡
A₀ ---> A₁ ---> A₂ ---> ⋯ ,
a₀ a₁ a₂
which are said to be “fibered over A
”, whose maps bₙ
are equivalences.
Definitions
Equifibered sequential diagrams
module _ {l1 : Level} (A : sequential-diagram l1) where equifibered-sequential-diagram : (l : Level) → UU (l1 ⊔ lsuc l) equifibered-sequential-diagram l = Σ ( (n : ℕ) → family-sequential-diagram A n → UU l) ( λ B → (n : ℕ) (a : family-sequential-diagram A n) → B n a ≃ B (succ-ℕ n) (map-sequential-diagram A n a))
Components of an equifibered sequential diagram
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : equifibered-sequential-diagram A l2) where family-equifibered-sequential-diagram : (n : ℕ) → family-sequential-diagram A n → UU l2 family-equifibered-sequential-diagram = pr1 B equiv-equifibered-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → family-equifibered-sequential-diagram n a ≃ family-equifibered-sequential-diagram ( succ-ℕ n) ( map-sequential-diagram A n a) equiv-equifibered-sequential-diagram = pr2 B map-equifibered-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → family-equifibered-sequential-diagram n a → family-equifibered-sequential-diagram ( succ-ℕ n) ( map-sequential-diagram A n a) map-equifibered-sequential-diagram n a = map-equiv (equiv-equifibered-sequential-diagram n a) is-equiv-map-equifibered-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-equifibered-sequential-diagram n a) is-equiv-map-equifibered-sequential-diagram n a = is-equiv-map-equiv (equiv-equifibered-sequential-diagram n a) dependent-sequential-diagram-equifibered-sequential-diagram : dependent-sequential-diagram A l2 pr1 dependent-sequential-diagram-equifibered-sequential-diagram = family-equifibered-sequential-diagram pr2 dependent-sequential-diagram-equifibered-sequential-diagram = map-equifibered-sequential-diagram
The predicate on dependent sequential diagrams of being equifibered
module _ {l1 l2 : Level} {A : sequential-diagram l1} where is-equifibered-dependent-sequential-diagram : (B : dependent-sequential-diagram A l2) → UU (l1 ⊔ l2) is-equifibered-dependent-sequential-diagram B = (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-dependent-sequential-diagram B n a) is-equifibered-dependent-sequential-diagram-equifibered-sequential-diagram : (B : equifibered-sequential-diagram A l2) → is-equifibered-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram B) is-equifibered-dependent-sequential-diagram-equifibered-sequential-diagram B = is-equiv-map-equifibered-sequential-diagram B
Properties
Dependent sequential diagrams which are equifibered are equifibered sequential diagrams
To construct an equifibered sequential diagram over A
, it suffices to
construct a dependent sequential diagram (B, b)
over A
, and show that the
maps bₙ
are equivalences.
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where equifibered-sequential-diagram-dependent-sequential-diagram : is-equifibered-dependent-sequential-diagram B → equifibered-sequential-diagram A l2 pr1 (equifibered-sequential-diagram-dependent-sequential-diagram _) = family-dependent-sequential-diagram B pr2 (equifibered-sequential-diagram-dependent-sequential-diagram is-equiv-map) n a = (map-dependent-sequential-diagram B n a , is-equiv-map n a)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).