1. Overview
  2. 1. Home
  3. 2. Community
    ❱
    1. 2.1. Maintainers
    2. 2.2. Contributors
    3. 2.3. Statement of inclusivity
    4. 2.4. Projects using agda-unimath
    5. 2.5. Grant acknowledgments
  4. 3. Guides
    ❱
    1. 3.1. Installing the library
    2. 3.2. Design principles
    3. 3.3. Contributing to the library
    4. 3.4. Structuring your file
      ❱
      1. 3.4.1. File template
    5. 3.5. The library coding style
    6. 3.6. Guidelines for mixfix operators
    7. 3.7. Citing sources
    8. 3.8. Citing the library
  5. 4. Library explorer
  6. 5. Art
  7. 6. Full list of library contents
  8. 7. Formalization of results from the literature
    ❱
    1. 7.1. Freek Wiedijk's 100 Theorems
    2. 7.2. 1000+ theorems
    3. 7.3. Idempotents in Intensional Type Theory
    4. 7.4. Introduction to homotopy type theory
    5. 7.5. Sequences of the online encyclopedia of integer sequences
    6. 7.6. Sequential Colimits in Homotopy Type Theory
  9. The agda-unimath library
  10. 8. Category theory
    ❱
    1. 8.1. Adjunctions between large categories
    2. 8.2. Adjunctions between large precategories
    3. 8.3. Adjunctions between precategories
    4. 8.4. Algebras over monads on precategories
    5. 8.5. Anafunctors between categories
    6. 8.6. Anafunctors between precategories
    7. 8.7. The augmented simplex category
    8. 8.8. Categories
    9. 8.9. The category of functors and natural transformations between two categories
    10. 8.10. The category of functors and natural transformations from small to large categories
    11. 8.11. The category of maps and natural transformations between two categories
    12. 8.12. The category of maps and natural transformations from small to large categories
    13. 8.13. Coalgebras over comonads on precategories
    14. 8.14. Cocones in precategories
    15. 8.15. Codensity monads on precategories
    16. 8.16. Colimits in precategories
    17. 8.17. Commuting squares of morphisms in large precategories
    18. 8.18. Commuting squares of morphisms in precategories
    19. 8.19. Commuting squares of morphisms in set-magmoids
    20. 8.20. Commuting triangles of morphisms in precategories
    21. 8.21. Commuting triangles of morphisms in set-magmoids
    22. 8.22. Comonads on precategories
    23. 8.23. Complete precategories
    24. 8.24. Composition operations on binary families of sets
    25. 8.25. Cones in precategories
    26. 8.26. Conservative functors between precategories
    27. 8.27. Constant functors
    28. 8.28. Copointed endofunctors on precategories
    29. 8.29. Copresheaf categories
    30. 8.30. Coproducts in precategories
    31. 8.31. Cores of categories
    32. 8.32. Cores of precategories
    33. 8.33. Coslice precategories
    34. 8.34. Density comonads on precategories
    35. 8.35. Dependent composition operations over precategories
    36. 8.36. Dependent products of categories
    37. 8.37. Dependent products of large categories
    38. 8.38. Dependent products of large precategories
    39. 8.39. Dependent products of precategories
    40. 8.40. Discrete categories
    41. 8.41. Displayed precategories
    42. 8.42. Embedding maps between precategories
    43. 8.43. Embeddings between precategories
    44. 8.44. Endomorphisms in categories
    45. 8.45. Endomorphisms in precategories
    46. 8.46. Epimorphism in large precategories
    47. 8.47. Equivalences between categories
    48. 8.48. Equivalences between large precategories
    49. 8.49. Equivalences between precategories
    50. 8.50. Essential fibers of functors between precategories
    51. 8.51. Essentially injective functors between precategories
    52. 8.52. Essentially surjective functors between precategories
    53. 8.53. Exponential objects in precategories
    54. 8.54. Extensions of functors between precategories
    55. 8.55. Faithful functors between precategories
    56. 8.56. Faithful maps between precategories
    57. 8.57. Full functors between precategories
    58. 8.58. Full large subcategories
    59. 8.59. Full large subprecategories
    60. 8.60. Full maps between precategories
    61. 8.61. Full subcategories
    62. 8.62. Full subprecategories
    63. 8.63. Fully faithful functors between precategories
    64. 8.64. Fully faithful maps between precategories
    65. 8.65. Function categories
    66. 8.66. Function precategories
    67. 8.67. Functors between categories
    68. 8.68. Functors from small to large categories
    69. 8.69. Functors from small to large precategories
    70. 8.70. Functors between large categories
    71. 8.71. Functors between large precategories
    72. 8.72. Functors between nonunital precategories
    73. 8.73. Functors between precategories
    74. 8.74. Functors between set-magmoids
    75. 8.75. Gaunt categories
    76. 8.76. Groupoids
    77. 8.77. Homotopies of natural transformations in large precategories
    78. 8.78. Indiscrete precategories
    79. 8.79. The initial category
    80. 8.80. Initial objects of large categories
    81. 8.81. Initial objects of large precategories
    82. 8.82. Initial objects in a precategory
    83. 8.83. Isomorphism induction in categories
    84. 8.84. Isomorphism induction in precategories
    85. 8.85. Isomorphisms in categories
    86. 8.86. Isomorphisms in large categories
    87. 8.87. Isomorphisms in large precategories
    88. 8.88. Isomorphisms in precategories
    89. 8.89. Isomorphisms in subprecategories
    90. 8.90. Large categories
    91. 8.91. Large function categories
    92. 8.92. Large function precategories
    93. 8.93. Large precategories
    94. 8.94. Large subcategories
    95. 8.95. Large subprecategories
    96. 8.96. Left extensions in precategories
    97. 8.97. Left Kan extensions in precategories
    98. 8.98. Limits in precategories
    99. 8.99. Maps between categories
    100. 8.100. Maps from small to large categories
    101. 8.101. Maps from small to large precategories
    102. 8.102. Maps between precategories
    103. 8.103. Maps between set-magmoids
    104. 8.104. Monads on categories
    105. 8.105. Monads on precategories
    106. 8.106. Monomorphisms in large precategories
    107. 8.107. Morphisms of algebras over monads on precategories
    108. 8.108. Morphisms of coalgebras over comonads on precategories
    109. 8.109. Natural isomorphisms between functors between categories
    110. 8.110. Natural isomorphisms between functors between large precategories
    111. 8.111. Natural isomorphisms between functors between precategories
    112. 8.112. Natural isomorphisms between maps between categories
    113. 8.113. Natural isomorphisms between maps between precategories
    114. 8.114. Natural numbers object in a precategory
    115. 8.115. Natural transformations between functors between categories
    116. 8.116. Natural transformations between functors from small to large categories
    117. 8.117. Natural transformations between functors from small to large precategories
    118. 8.118. Natural transformations between functors between large categories
    119. 8.119. Natural transformations between functors between large precategories
    120. 8.120. Natural transformations between functors between precategories
    121. 8.121. Natural transformations between maps between categories
    122. 8.122. Natural transformations between maps from small to large precategories
    123. 8.123. Natural transformations between maps between precategories
    124. 8.124. Nonunital precategories
    125. 8.125. One object precategories
    126. 8.126. Opposite categories
    127. 8.127. Opposite large precategories
    128. 8.128. Opposite precategories
    129. 8.129. Opposite preunivalent categories
    130. 8.130. Opposite strongly preunivalent categories
    131. 8.131. Pointed endofunctors on categories
    132. 8.132. Pointed endofunctors on precategories
    133. 8.133. Precategories
    134. 8.134. The precategory of algebras over a monad
    135. 8.135. The precategory of coalgebras over a comonad
    136. 8.136. Precategory of elements of a presheaf
    137. 8.137. The precategory of free algebras of a monad
    138. 8.138. The precategory of functors and natural transformations between two precategories
    139. 8.139. The precategory of functors and natural transformations from small to large precategories
    140. 8.140. The precategory of maps and natural transformations from a small to a large precategory
    141. 8.141. The precategory of maps and natural transformations between two precategories
    142. 8.142. Pregroupoids
    143. 8.143. Presheaf categories
    144. 8.144. Preunivalent categories
    145. 8.145. Products in precategories
    146. 8.146. Products of precategories
    147. 8.147. Pseudomonic functors between precategories
    148. 8.148. Pullbacks in precategories
    149. 8.149. Replete subprecategories
    150. 8.150. Representable functors between categories
    151. 8.151. Representable functors between large precategories
    152. 8.152. Representable functors between precategories
    153. 8.153. The representing arrow category
    154. 8.154. Restrictions of functors to cores of precategories
    155. 8.155. Right extensions in precategories
    156. 8.156. Right Kan extensions in precategories
    157. 8.157. Rigid objects in a category
    158. 8.158. Rigid objects in a precategory
    159. 8.159. Set-magmoids
    160. 8.160. Sieves in categories
    161. 8.161. The simplex category
    162. 8.162. Slice precategories
    163. 8.163. Split essentially surjective functors between precategories
    164. 8.164. Strict categories
    165. 8.165. Strongly preunivalent categories
    166. 8.166. Structure equivalences between set-magmoids
    167. 8.167. Subcategories
    168. 8.168. Subprecategories
    169. 8.169. Subterminal precategories
    170. 8.170. The terminal category
    171. 8.171. Terminal objects in a precategory
    172. 8.172. Wide subcategories
    173. 8.173. Wide subprecategories
    174. 8.174. The Yoneda lemma for categories
    175. 8.175. The Yoneda lemma for precategories
  11. 9. Commutative algebra
    ❱
    1. 9.1. The binomial theorem in commutative rings
    2. 9.2. The binomial theorem in commutative semirings
    3. 9.3. Boolean rings
    4. 9.4. The category of commutative rings
    5. 9.5. Commutative rings
    6. 9.6. Commutative semirings
    7. 9.7. Convolution of sequences in commutative rings
    8. 9.8. Convolution of sequences in commutative semirings
    9. 9.9. Dependent products of commutative rings
    10. 9.10. Dependent products of commutative semirings
    11. 9.11. Discrete fields
    12. 9.12. The Eisenstein integers
    13. 9.13. Euclidean domains
    14. 9.14. Full ideals of commutative rings
    15. 9.15. Function commutative rings
    16. 9.16. Function commutative semirings
    17. 9.17. The Gaussian integers
    18. 9.18. The group of multiplicative units of a commutative ring
    19. 9.19. Homomorphisms of commutative rings
    20. 9.20. Homomorphisms of commutative semirings
    21. 9.21. Ideals of commutative rings
    22. 9.22. Ideals of commutative semirings
    23. 9.23. Ideals generated by subsets of commutative rings
    24. 9.24. Integer multiples of elements of commutative rings
    25. 9.25. Integral domains
    26. 9.26. Intersections of ideals of commutative rings
    27. 9.27. Intersections of radical ideals of commutative rings
    28. 9.28. Invertible elements in commutative rings
    29. 9.29. Isomorphisms of commutative rings
    30. 9.30. Joins of ideals of commutative rings
    31. 9.31. Joins of radical ideals of commutative rings
    32. 9.32. Local commutative rings
    33. 9.33. Maximal ideals of commutative rings
    34. 9.34. Multiples of elements in commutative rings
    35. 9.35. Nilradical of a commutative ring
    36. 9.36. The nilradical of a commutative semiring
    37. 9.37. The poset of ideals of a commutative ring
    38. 9.38. The poset of radical ideals of a commutative ring
    39. 9.39. Powers of elements in commutative rings
    40. 9.40. Powers of elements in commutative semirings
    41. 9.41. The precategory of commutative rings
    42. 9.42. The precategory of commutative semirings
    43. 9.43. Prime ideals of commutative rings
    44. 9.44. Products of commutative rings
    45. 9.45. Products of ideals of commutative rings
    46. 9.46. Products of radical ideals of a commutative ring
    47. 9.47. Products of subsets of commutative rings
    48. 9.48. Radical ideals of commutative rings
    49. 9.49. Radical ideals generated by subsets of commutative rings
    50. 9.50. Radicals of ideals of commutative rings
    51. 9.51. Subsets of commutative rings
    52. 9.52. Subsets of commutative semirings
    53. 9.53. Sums of finite families in commutative rings
    54. 9.54. Sums of finite families of elements in commutative semirings
    55. 9.55. Sums of finite sequences in commutative rings
    56. 9.56. Sums of finite sequences in commutative semirings
    57. 9.57. Transporting commutative ring structures along isomorphisms of abelian groups
    58. 9.58. Trivial commutative rings
    59. 9.59. The Zariski locale
    60. 9.60. The Zariski topology on the set of prime ideals of a commutative ring
  12. 10. Domain theory
    ❱
    1. 10.1. Directed complete posets
    2. 10.2. Directed families in posets
    3. 10.3. Kleene's fixed point theorem for ω-complete posets
    4. 10.4. Kleene's fixed point theorem for posets
    5. 10.5. ω-Complete posets
    6. 10.6. ω-Continuous maps between ω-complete posets
    7. 10.7. ω-Continuous maps between posets
    8. 10.8. Reindexing directed families in posets
    9. 10.9. Scott-continuous maps between posets
  13. 11. Elementary number theory
    ❱
    1. 11.1. The absolute value function on the integers
    2. 11.2. The absolute value function on the rational numbers
    3. 11.3. The Ackermann function
    4. 11.4. Addition on integer fractions
    5. 11.5. Addition on the integers
    6. 11.6. Addition on the natural numbers
    7. 11.7. Addition of positive, negative, nonnegative and nonpositive integers
    8. 11.8. Addition on the rational numbers
    9. 11.9. The additive group of rational numbers
    10. 11.10. The Archimedean property of integer fractions
    11. 11.11. The Archimedean property of the integers
    12. 11.12. The Archimedean property of the natural numbers
    13. 11.13. The Archimedean property of the positive rational numbers
    14. 11.14. The Archimedean property of ℚ
    15. 11.15. Arithmetic functions
    16. 11.16. Arithmetic sequences of positive rational numbers
    17. 11.17. The based induction principle of the natural numbers
    18. 11.18. Based strong induction for the natural numbers
    19. 11.19. The Bell numbers
    20. 11.20. Bernoulli's inequality on the positive rational numbers
    21. 11.21. Bezout's lemma in the integers
    22. 11.22. Bezout's lemma on the natural numbers
    23. 11.23. Binary sum decompositions of natural numbers
    24. 11.24. The binomial coefficients
    25. 11.25. The binomial theorem for the integers
    26. 11.26. The binomial theorem for the natural numbers
    27. 11.27. Bounded sums of arithmetic functions
    28. 11.28. Catalan numbers
    29. 11.29. Closed intervals of rational numbers
    30. 11.30. The cofibonacci sequence
    31. 11.31. The Collatz bijection
    32. 11.32. The Collatz conjecture
    33. 11.33. The commutative semiring of natural numbers
    34. 11.34. Conatural numbers
    35. 11.35. The congruence relations on the integers
    36. 11.36. The congruence relations on the natural numbers
    37. 11.37. The cross-multiplication difference of two integer fractions
    38. 11.38. Cubes of natural numbers
    39. 11.39. Decidable dependent function types
    40. 11.40. The decidable total order of integers
    41. 11.41. The decidable total order of natural numbers
    42. 11.42. The decidable total order of rational numbers
    43. 11.43. The decidable total order of a standard finite type
    44. 11.44. Decidable types in elementary number theory
    45. 11.45. The difference between integers
    46. 11.46. The difference between rational numbers
    47. 11.47. Dirichlet convolution
    48. 11.48. The distance between integers
    49. 11.49. The distance between natural numbers
    50. 11.50. The distance between rational numbers
    51. 11.51. Divisibility of integers
    52. 11.52. Divisibility in modular arithmetic
    53. 11.53. Divisibility of natural numbers
    54. 11.54. The divisibility relation on the standard finite types
    55. 11.55. Equality of conatural numbers
    56. 11.56. Equality of integers
    57. 11.57. Equality of natural numbers
    58. 11.58. Equality of rational numbers
    59. 11.59. The Euclid–Mullin sequence
    60. 11.60. Euclidean division on the natural numbers
    61. 11.61. Euler's totient function
    62. 11.62. Exponentiation of natural numbers
    63. 11.63. Factorials of natural numbers
    64. 11.64. Falling factorials
    65. 11.65. Fermat numbers
    66. 11.66. The Fibonacci sequence
    67. 11.67. The field of rational numbers
    68. 11.68. The natural numbers base k
    69. 11.69. Finitely cyclic maps
    70. 11.70. The fundamental theorem of arithmetic
    71. 11.71. Geometric sequences of positive rational numbers
    72. 11.72. The Goldbach conjecture
    73. 11.73. The greatest common divisor of integers
    74. 11.74. The greatest common divisor of natural numbers
    75. 11.75. The group of integers
    76. 11.76. The half-integers
    77. 11.77. The Hardy-Ramanujan number
    78. 11.78. The inclusion of the natural numbers into the conatural numbers
    79. 11.79. Inequality of arithmetic and geometric means on the integers
    80. 11.80. Inequality of arithmetic and geometric means on the rational numbers
    81. 11.81. Inequality of conatural numbers
    82. 11.82. Inequality on integer fractions
    83. 11.83. Inequality on the integers
    84. 11.84. Inequality of natural numbers
    85. 11.85. Inequality on the rational numbers
    86. 11.86. Inequality on the standard finite types
    87. 11.87. Infinite conatural numbers
    88. 11.88. The infinitude of primes
    89. 11.89. Initial segments of the natural numbers
    90. 11.90. Integer fractions
    91. 11.91. Integer partitions
    92. 11.92. The integers
    93. 11.93. The Jacobi symbol
    94. 11.94. The Kolakoski sequence
    95. 11.95. The Legendre symbol
    96. 11.96. Lower bounds of type families over the natural numbers
    97. 11.97. Maximum on the natural numbers
    98. 11.98. Maximum on the rational numbers
    99. 11.99. Maximum on the standard finite types
    100. 11.100. The mediant fraction of two integer fractions
    101. 11.101. Mersenne primes
    102. 11.102. Minimum on the natural numbers
    103. 11.103. Minimum on the rational numbers
    104. 11.104. Minimum on the standard finite types
    105. 11.105. Modular arithmetic
    106. 11.106. Modular arithmetic on the standard finite types
    107. 11.107. The monoid of natural numbers with addition
    108. 11.108. The monoid of the natural numbers with maximum
    109. 11.109. Multiplication on integer fractions
    110. 11.110. Multiplication of integers
    111. 11.111. Multiplication of the elements of a list of natural numbers
    112. 11.112. Multiplication of natural numbers
    113. 11.113. Multiplication of positive, negative, nonnegative and nonpositive integers
    114. 11.114. Multiplication on the rational numbers
    115. 11.115. The multiplicative group of positive rational numbers
    116. 11.116. The multiplicative group of rational numbers
    117. 11.117. Multiplicative inverses of positive integer fractions
    118. 11.118. The multiplicative monoid of natural numbers
    119. 11.119. The multiplicative monoid of rational numbers
    120. 11.120. Multiplicative units in the integers
    121. 11.121. Multiplicative units in modular arithmetic
    122. 11.122. Multiset coefficients
    123. 11.123. The type of natural numbers
    124. 11.124. Negative integer fractions
    125. 11.125. The negative integers
    126. 11.126. Negative rational numbers
    127. 11.127. Nonnegative integer fractions
    128. 11.128. The nonnegative integers
    129. 11.129. Nonnegative rational numbers
    130. 11.130. The nonpositive integers
    131. 11.131. Nonzero integers
    132. 11.132. Nonzero natural numbers
    133. 11.133. Nonzero rational numbers
    134. 11.134. The ordinal induction principle for the natural numbers
    135. 11.135. Parity of the natural numbers
    136. 11.136. Peano arithmetic
    137. 11.137. Pisano periods
    138. 11.138. The poset of natural numbers ordered by divisibility
    139. 11.139. The positive, negative, nonnegative and nonpositive integers
    140. 11.140. The positive, negative, and nonnegative rational numbers
    141. 11.141. Positive conatural numbers
    142. 11.142. Positive integer fractions
    143. 11.143. The positive integers
    144. 11.144. Positive rational numbers
    145. 11.145. Powers of integers
    146. 11.146. Powers of two
    147. 11.147. Prime numbers
    148. 11.148. Products of natural numbers
    149. 11.149. Proper divisors of natural numbers
    150. 11.150. Pythagorean triples
    151. 11.151. The rational numbers
    152. 11.152. Reduced integer fractions
    153. 11.153. Relatively prime integers
    154. 11.154. Relatively prime natural numbers
    155. 11.155. Repeating an element in a standard finite type
    156. 11.156. Retracts of the type of natural numbers
    157. 11.157. The ring of integers
    158. 11.158. The ring of rational numbers
    159. 11.159. The sieve of Eratosthenes
    160. 11.160. Square-free natural numbers
    161. 11.161. Squares in the integers
    162. 11.162. Squares in ℤₚ
    163. 11.163. Squares in the natural numbers
    164. 11.164. Squares in the rational numbers
    165. 11.165. The standard cyclic groups
    166. 11.166. The standard cyclic rings
    167. 11.167. Stirling numbers of the second kind
    168. 11.168. Strict inequality on the integer fractions
    169. 11.169. Strict inequality on the integers
    170. 11.170. Strict inequality on the natural numbers
    171. 11.171. Strict inequality on the rational numbers
    172. 11.172. Strict inequality on the standard finite types
    173. 11.173. Strictly ordered pairs of natural numbers
    174. 11.174. The strong induction principle for the natural numbers
    175. 11.175. Sums of natural numbers
    176. 11.176. Sylvester's sequence
    177. 11.177. Taxicab numbers
    178. 11.178. Telephone numbers
    179. 11.179. The triangular numbers
    180. 11.180. The Twin Prime conjecture
    181. 11.181. Type arithmetic with natural numbers
    182. 11.182. Unit elements in the standard finite types
    183. 11.183. Unit fractions in the rational numbers types
    184. 11.184. Unit similarity on the standard finite types
    185. 11.185. The universal property of the conatural numbers
    186. 11.186. The universal property of the integers
    187. 11.187. The universal property of the natural numbers
    188. 11.188. Upper bounds for type families over the natural numbers
    189. 11.189. The well-ordering principle of the natural numbers
    190. 11.190. The well-ordering principle of the standard finite types
    191. 11.191. The zero conatural number
  14. 12. Finite algebra
    ❱
    1. 12.1. Commutative finite rings
    2. 12.2. Dependent products of commutative finit rings
    3. 12.3. Dependent products of finite rings
    4. 12.4. Finite fields
    5. 12.5. Finite rings
    6. 12.6. Homomorphisms of commutative finite rings
    7. 12.7. Homomorphisms of finite rings
    8. 12.8. Products of commutative finite rings
    9. 12.9. Products of finite rings
    10. 12.10. Semisimple commutative finite rings
  15. 13. Finite group theory
    ❱
    1. 13.1. The abstract quaternion group of order 8
    2. 13.2. Alternating concrete groups
    3. 13.3. Alternating groups
    4. 13.4. Cartier's delooping of the sign homomorphism
    5. 13.5. The concrete quaternion group
    6. 13.6. Deloopings of the sign homomorphism
    7. 13.7. Abelian groups
    8. 13.8. Finite Commutative monoids
    9. 13.9. Finite groups
    10. 13.10. Finite monoids
    11. 13.11. Finite semigroups
    12. 13.12. The group of n-element types
    13. 13.13. Groups of order 2
    14. 13.14. Orbits of permutations
    15. 13.15. Permutations
    16. 13.16. Permutations of standard finite types
    17. 13.17. The sign homomorphism
    18. 13.18. Simpson's delooping of the sign homomorphism
    19. 13.19. Subgroups of finite groups
    20. 13.20. Tetrahedra in 3-dimensional space
    21. 13.21. Transpositions
    22. 13.22. Transpositions of standard finite types
  16. 14. Foundation
    ❱
    1. 14.1. 0-Connected types
    2. 14.2. 0-Images of maps
    3. 14.3. 0-Maps
    4. 14.4. 1-Types
    5. 14.5. 2-Types
    6. 14.6. Action on equivalences of functions
    7. 14.7. The action on equivalences of functions out of subuniverses
    8. 14.8. Action on equivalences of type families
    9. 14.9. Action on equivalences in type families over subuniverses
    10. 14.10. The action of functions on higher identifications
    11. 14.11. The action on homotopies of functions
    12. 14.12. The binary action on identifications of binary dependent functions
    13. 14.13. The binary action on identifications of binary functions
    14. 14.14. The action on identifications of dependent functions
    15. 14.15. The action on identifications of functions
    16. 14.16. Apartness relations
    17. 14.17. Arithmetic law for coproduct decomposition and Σ-decomposition
    18. 14.18. Arithmetic law for product decomposition and Π-decomposition
    19. 14.19. Automorphisms
    20. 14.20. The axiom of choice
    21. 14.21. Bands
    22. 14.22. Base changes of span diagrams
    23. 14.23. Bicomposition of functions
    24. 14.24. Binary dependent identifications
    25. 14.25. Binary embeddings
    26. 14.26. Binary equivalences
    27. 14.27. Binary equivalences on unordered pairs of types
    28. 14.28. Binary functoriality of set quotients
    29. 14.29. Homotopies of binary operations
    30. 14.30. Binary operations on unordered pairs of types
    31. 14.31. Binary reflecting maps of equivalence relations
    32. 14.32. Binary relations
    33. 14.33. Binary relations with extensions
    34. 14.34. Binary relations with lifts
    35. 14.35. Binary transport
    36. 14.36. Binary type duality
    37. 14.37. The booleans
    38. 14.38. The Cantor–Schröder–Bernstein–Escardó theorem
    39. 14.39. Cantor's theorem
    40. 14.40. Cartesian morphisms of arrows
    41. 14.41. Cartesian morphisms of span diagrams
    42. 14.42. Cartesian product types
    43. 14.43. Cartesian products of set quotients
    44. 14.44. The category of families of sets
    45. 14.45. The category of sets
    46. 14.46. Choice of representatives for an equivalence relation
    47. 14.47. Coalgebras of the maybe monad
    48. 14.48. Codiagonal maps of types
    49. 14.49. Coherently idempotent maps
    50. 14.50. Coherently invertible maps
    51. 14.51. Coinhabited pairs of types
    52. 14.52. Commuting cubes of maps
    53. 14.53. Commuting hexagons of identifications
    54. 14.54. Commuting pentagons of identifications
    55. 14.55. Commuting prisms of maps
    56. 14.56. Commuting squares of homotopies
    57. 14.57. Commuting squares of identifications
    58. 14.58. Commuting squares of maps
    59. 14.59. Commuting tetrahedra of homotopies
    60. 14.60. Commuting tetrahedra of maps
    61. 14.61. Commuting triangles of homotopies
    62. 14.62. Commuting triangles of identifications
    63. 14.63. Commuting triangles of maps
    64. 14.64. Commuting triangles of morphisms of arrows
    65. 14.65. Complements of type families
    66. 14.66. Complements of subtypes
    67. 14.67. Composite maps in inverse sequential diagrams
    68. 14.68. Composition algebra
    69. 14.69. Composition of spans
    70. 14.70. Computational identity types
    71. 14.71. Cones over cospan diagrams
    72. 14.72. Cones over inverse sequential diagrams
    73. 14.73. Conjunction
    74. 14.74. Connected components of types
    75. 14.75. Connected components of universes
    76. 14.76. Connected maps
    77. 14.77. Connected types
    78. 14.78. Constant maps
    79. 14.79. Constant span diagrams
    80. 14.80. Constant type families
    81. 14.81. The continuation monad
    82. 14.82. Contractible maps
    83. 14.83. Contractible types
    84. 14.84. Copartial elements
    85. 14.85. Copartial functions
    86. 14.86. Coproduct decompositions
    87. 14.87. Coproduct decompositions in a subuniverse
    88. 14.88. Coproduct types
    89. 14.89. Coproducts of pullbacks
    90. 14.90. Morphisms in the coslice category of types
    91. 14.91. Cospan diagrams
    92. 14.92. Cospans of types
    93. 14.93. Decidability of dependent function types
    94. 14.94. Decidability of dependent pair types
    95. 14.95. Decidable embeddings
    96. 14.96. Decidable equality
    97. 14.97. Decidable equivalence relations
    98. 14.98. Decidable maps
    99. 14.99. Decidable propositions
    100. 14.100. Decidable relations on types
    101. 14.101. Decidable subtypes
    102. 14.102. Decidable types
    103. 14.103. Dependent binary homotopies
    104. 14.104. The dependent binomial theorem for types (distributivity of dependent function types over coproduct types)
    105. 14.105. Dependent epimorphisms
    106. 14.106. Dependent epimorphisms with respect to truncated types
    107. 14.107. Dependent function types
    108. 14.108. Dependent homotopies
    109. 14.109. Dependent identifications
    110. 14.110. Dependent inverse sequential diagrams of types
    111. 14.111. Dependent pair types
    112. 14.112. Dependent products of pullbacks
    113. 14.113. Dependent sequences
    114. 14.114. Dependent sums of pullbacks
    115. 14.115. Dependent telescopes
    116. 14.116. The dependent universal property of equivalences
    117. 14.117. Descent for coproduct types
    118. 14.118. Descent for dependent pair types
    119. 14.119. Descent for the empty type
    120. 14.120. Descent for equivalences
    121. 14.121. Diaconescu's theorem
    122. 14.122. Diagonal maps into cartesian products of types
    123. 14.123. Diagonal maps of types
    124. 14.124. Diagonal span diagrams
    125. 14.125. Diagonals of maps
    126. 14.126. Diagonals of morphisms of arrows
    127. 14.127. Discrete binary relations
    128. 14.128. Discrete reflexive relations
    129. 14.129. Discrete relaxed Σ-decompositions
    130. 14.130. Discrete Σ-decompositions
    131. 14.131. Discrete types
    132. 14.132. Disjoint subtypes
    133. 14.133. Disjunction
    134. 14.134. Double arrows
    135. 14.135. Double negation
    136. 14.136. The double negation modality
    137. 14.137. Double negation stable equality
    138. 14.138. Double negation stable propositions
    139. 14.139. Double powersets
    140. 14.140. Dubuc-Penon compact types
    141. 14.141. Effective maps for equivalence relations
    142. 14.142. Embeddings
    143. 14.143. Empty types
    144. 14.144. Endomorphisms
    145. 14.145. Epimorphisms
    146. 14.146. Epimorphisms with respect to maps into sets
    147. 14.147. Epimorphisms with respect to truncated types
    148. 14.148. Equality of cartesian product types
    149. 14.149. Equality of coproduct types
    150. 14.150. Equality on dependent function types
    151. 14.151. Equality of dependent pair types
    152. 14.152. Equality in the fibers of a map
    153. 14.153. Equivalence classes
    154. 14.154. Equivalence extensionality
    155. 14.155. Equivalence induction
    156. 14.156. Equivalence injective type families
    157. 14.157. Equivalence relations
    158. 14.158. Equivalences
    159. 14.159. Equivalences of arrows
    160. 14.160. Equivalences of cospans
    161. 14.161. Equivalences of double arrows
    162. 14.162. Equivalences of inverse sequential diagrams of types
    163. 14.163. Equivalences on Maybe
    164. 14.164. Equivalences of span diagrams
    165. 14.165. Equivalences of span diagrams on families of types
    166. 14.166. Equivalences of spans
    167. 14.167. Equivalences of spans of families of types
    168. 14.168. Evaluation of functions
    169. 14.169. Exclusive disjunctions
    170. 14.170. Exclusive sums
    171. 14.171. Existential quantification
    172. 14.172. Exponents of set quotients
    173. 14.173. Extensions of types
    174. 14.174. Extensions of types in a global subuniverse
    175. 14.175. Extensions of types in a subuniverse
    176. 14.176. Faithful maps
    177. 14.177. Families of equivalences
    178. 14.178. Families of maps
    179. 14.179. Families of types over telescopes
    180. 14.180. Fiber inclusions
    181. 14.181. Fibered equivalences
    182. 14.182. Fibered involutions
    183. 14.183. Maps fibered over a map
    184. 14.184. Fibers of maps
    185. 14.185. Finite sequences of set quotients
    186. 14.186. Finitely coherent equivalences
    187. 14.187. Finitely coherently invertible maps
    188. 14.188. Fixed points of endofunctions
    189. 14.189. Freely generated equivalence relations
    190. 14.190. Full subtypes of types
    191. 14.191. Function extensionality
    192. 14.192. Function types
    193. 14.193. Functional correspondences
    194. 14.194. Functoriality of the action on identifications of functions
    195. 14.195. Functoriality of cartesian product types
    196. 14.196. Functoriality of coproduct types
    197. 14.197. Functoriality of dependent function types
    198. 14.198. Functoriality of dependent pair types
    199. 14.199. Functoriality of disjunction
    200. 14.200. Functoriality of fibers of maps
    201. 14.201. Functoriality of function types
    202. 14.202. Functoriality of morphisms of arrows
    203. 14.203. Functoriality of propositional truncations
    204. 14.204. Functorialty of pullbacks
    205. 14.205. Functoriality of sequential limits
    206. 14.206. Functoriality of set quotients
    207. 14.207. Functoriality of set truncation
    208. 14.208. Functoriality of truncations
    209. 14.209. Fundamental theorem of equivalence relations
    210. 14.210. The fundamental theorem of identity types
    211. 14.211. Global choice
    212. 14.212. Global subuniverses
    213. 14.213. The globular type of dependent functions
    214. 14.214. The globular type of functions
    215. 14.215. Higher homotopies of morphisms of arrows
    216. 14.216. Hilbert's ε-operators
    217. 14.217. Homotopies
    218. 14.218. Homotopies of morphisms of arrows
    219. 14.219. Homotopies of morphisms of cospan diagrams
    220. 14.220. Homotopy algebra
    221. 14.221. Homotopy induction
    222. 14.222. The homotopy preorder of types
    223. 14.223. Horizontal composition of spans of spans
    224. 14.224. Idempotent maps
    225. 14.225. Identity systems
    226. 14.226. Identity types of truncated types
    227. 14.227. Identity types
    228. 14.228. The image of a map
    229. 14.229. Images of subtypes
    230. 14.230. Implicit function types
    231. 14.231. Impredicative encodings of the logical operations
    232. 14.232. Impredicative universes
    233. 14.233. The induction principle for propositional truncation
    234. 14.234. Infinitely coherent equivalences
    235. 14.235. Inhabited subtypes
    236. 14.236. Inhabited types
    237. 14.237. Injective maps
    238. 14.238. The interchange law
    239. 14.239. Intersections of subtypes
    240. 14.240. Inverse sequential diagrams of types
    241. 14.241. Invertible maps
    242. 14.242. Involutions
    243. 14.243. Irrefutable propositions
    244. 14.244. Isolated elements
    245. 14.245. Isomorphisms of sets
    246. 14.246. Iterated cartesian product types
    247. 14.247. Iterated dependent pair types
    248. 14.248. Iterated dependent product types
    249. 14.249. Iterating automorphisms
    250. 14.250. Iterating families of maps over a map
    251. 14.251. Iterating functions
    252. 14.252. Iterating involutions
    253. 14.253. Kernel span diagrams of maps
    254. 14.254. Large apartness relations
    255. 14.255. Large binary relations
    256. 14.256. Large dependent pair types
    257. 14.257. Large homotopies
    258. 14.258. Large identity types
    259. 14.259. The large locale of propositions
    260. 14.260. The large locale of subtypes
    261. 14.261. The law of excluded middle
    262. 14.262. Lawvere's fixed point theorem
    263. 14.263. The lesser limited principle of omniscience
    264. 14.264. Lifts of types
    265. 14.265. The limited principle of omniscience
    266. 14.266. The locale of propositions
    267. 14.267. Locally small types
    268. 14.268. Logical equivalences
    269. 14.269. Maps in global subuniverses
    270. 14.270. Maps in subuniverses
    271. 14.271. The maybe monad
    272. 14.272. Mere embeddings
    273. 14.273. Mere equality
    274. 14.274. Mere equivalences
    275. 14.275. Mere functions
    276. 14.276. Mere logical equivalences
    277. 14.277. Mere path-cosplit maps
    278. 14.278. Monomorphisms
    279. 14.279. Morphisms of arrows
    280. 14.280. Morphisms of binary relations
    281. 14.281. Morphisms of coalgebras of the maybe monad
    282. 14.282. Morphisms of cospan diagrams
    283. 14.283. Morphisms of cospans
    284. 14.284. Morphisms of double arrows
    285. 14.285. Morphisms of inverse sequential diagrams of types
    286. 14.286. Morphisms of span diagrams
    287. 14.287. Morphisms of spans
    288. 14.288. Morphisms of spans on families of types
    289. 14.289. Morphisms of twisted arrows
    290. 14.290. Multisubsets
    291. 14.291. Multivariable correspondences
    292. 14.292. Multivariable decidable relations
    293. 14.293. Multivariable functoriality of set quotients
    294. 14.294. Multivariable homotopies
    295. 14.295. Multivariable operations
    296. 14.296. Multivariable relations
    297. 14.297. Multivariable sections
    298. 14.298. Negated equality
    299. 14.299. Negation
    300. 14.300. Noncontractible types
    301. 14.301. Null-homotopic maps
    302. 14.302. Operations on span diagrams
    303. 14.303. Operations on spans
    304. 14.304. Operations on spans of families of types
    305. 14.305. Opposite spans
    306. 14.306. Pairs of distinct elements
    307. 14.307. Partial elements
    308. 14.308. Partial functions
    309. 14.309. Partial sequences
    310. 14.310. Partitions
    311. 14.311. Path algebra
    312. 14.312. Path-cosplit maps
    313. 14.313. Path-split maps
    314. 14.314. Path-split type families
    315. 14.315. Perfect images
    316. 14.316. Permutations of spans of families of types
    317. 14.317. Π-decompositions of types
    318. 14.318. Π-decompositions of types into types in a subuniverse
    319. 14.319. Pointed torsorial type families
    320. 14.320. Postcomposition of dependent functions
    321. 14.321. Postcomposition of functions
    322. 14.322. Postcomposition of pullbacks
    323. 14.323. Powersets
    324. 14.324. Precomposition of dependent functions
    325. 14.325. Precomposition of functions
    326. 14.326. Precomposition of functions into subuniverses
    327. 14.327. Precomposition of type families
    328. 14.328. The preunivalence axiom
    329. 14.329. Preunivalent type families
    330. 14.330. The principle of omniscience
    331. 14.331. Product decompositions
    332. 14.332. Product decompositions of types in a subuniverse
    333. 14.333. Products of binary relations
    334. 14.334. Products of equivalence relataions
    335. 14.335. Products of tuples of types
    336. 14.336. Products of pullbacks
    337. 14.337. Products of unordered pairs of types
    338. 14.338. Products of unordered tuples of types
    339. 14.339. Projective types
    340. 14.340. Proper subsets
    341. 14.341. Propositional extensionality
    342. 14.342. Propositional maps
    343. 14.343. Propositional resizing
    344. 14.344. Propositional truncations
    345. 14.345. Propositions
    346. 14.346. Pullback cones
    347. 14.347. Pullbacks
    348. 14.348. Pullbacks of subtypes
    349. 14.349. Quasicoherently idempotent maps
    350. 14.350. Raising universe levels
    351. 14.351. Reflecting maps for equivalence relations
    352. 14.352. Reflexive relations
    353. 14.353. The Regensburg extension of the fundamental theorem of identity types
    354. 14.354. Relaxed Σ-decompositions of types
    355. 14.355. Repetitions of values of maps
    356. 14.356. Repetitions in sequences
    357. 14.357. The type theoretic replacement axiom
    358. 14.358. Retractions
    359. 14.359. Retracts of maps
    360. 14.360. Retracts of types
    361. 14.361. Sections
    362. 14.362. Types separated at subuniverses
    363. 14.363. Sequences
    364. 14.364. Sequential limits
    365. 14.365. Set coequalizers
    366. 14.366. Set presented types
    367. 14.367. Set quotients
    368. 14.368. Set truncations
    369. 14.369. Sets
    370. 14.370. Shifting sequences
    371. 14.371. Σ-closed subuniverses
    372. 14.372. Σ-decompositions of types into types in a subuniverse
    373. 14.373. Σ-decompositions of types
    374. 14.374. Singleton induction
    375. 14.375. Singleton subtypes
    376. 14.376. Morphisms in the slice category of types
    377. 14.377. Small maps
    378. 14.378. Small types
    379. 14.379. Small universes
    380. 14.380. Sorial type families
    381. 14.381. Span diagrams
    382. 14.382. Span diagrams on families of types
    383. 14.383. Spans of types
    384. 14.384. Spans of families of types
    385. 14.385. Spans of spans
    386. 14.386. Split idempotent maps
    387. 14.387. Split surjective maps
    388. 14.388. Standard apartness relations
    389. 14.389. Standard pullbacks
    390. 14.390. Standard ternary pullbacks
    391. 14.391. Strict symmetrization of binary relations
    392. 14.392. Strictly involutive identity types
    393. 14.393. The strictly right unital concatenation operation on identifications
    394. 14.394. The strong preunivalence axiom
    395. 14.395. Strongly extensional maps
    396. 14.396. Structure
    397. 14.397. The structure identity principle
    398. 14.398. Structured equality duality
    399. 14.399. Structured type duality
    400. 14.400. Subsequences
    401. 14.401. Subsingleton induction
    402. 14.402. Subterminal types
    403. 14.403. Subtype duality
    404. 14.404. The subtype identity principle
    405. 14.405. Subtypes
    406. 14.406. Subuniverses
    407. 14.407. Surjective maps
    408. 14.408. Symmetric binary relations
    409. 14.409. Symmetric cores of binary relations
    410. 14.410. Symmetric difference of subtypes
    411. 14.411. The symmetric identity types
    412. 14.412. Symmetric operations
    413. 14.413. Telescopes
    414. 14.414. Terminal spans on families of types
    415. 14.415. Tight apartness relations
    416. 14.416. Torsorial type families
    417. 14.417. Total partial elements
    418. 14.418. Total partial functions
    419. 14.419. Transfinite cocomposition of maps
    420. 14.420. Transport along equivalences
    421. 14.421. Transport along higher identifications
    422. 14.422. Transport along homotopies
    423. 14.423. Transport along identifications
    424. 14.424. Transport-split type families
    425. 14.425. Transposing identifications along equivalences
    426. 14.426. Transposing identifications along retractions
    427. 14.427. Transposing identifications along sections
    428. 14.428. Transposition of span diagrams
    429. 14.429. Trivial relaxed Σ-decompositions
    430. 14.430. Trivial Σ-decompositions
    431. 14.431. Truncated equality
    432. 14.432. Truncated maps
    433. 14.433. Truncated types
    434. 14.434. k-Equivalences
    435. 14.435. Truncation images of maps
    436. 14.436. Truncation levels
    437. 14.437. The truncation modalities
    438. 14.438. Truncations
    439. 14.439. Tuples of types
    440. 14.440. Type arithmetic with the booleans
    441. 14.441. Type arithmetic for cartesian product types
    442. 14.442. Type arithmetic for coproduct types
    443. 14.443. Type arithmetic with dependent function types
    444. 14.444. Type arithmetic for dependent pair types
    445. 14.445. Type arithmetic with the empty type
    446. 14.446. Type arithmetic with standard pullbacks
    447. 14.447. Type arithmetic with the unit type
    448. 14.448. Type duality
    449. 14.449. The type theoretic principle of choice
    450. 14.450. Uniformly decidable type families
    451. 14.451. Unions of subtypes
    452. 14.452. Uniqueness of the image of a map
    453. 14.453. Uniqueness quantification
    454. 14.454. The uniqueness of set quotients
    455. 14.455. Uniqueness of set truncations
    456. 14.456. Uniqueness of the truncations
    457. 14.457. The unit type
    458. 14.458. Unital binary operations
    459. 14.459. The univalence axiom
    460. 14.460. The univalence axiom implies function extensionality
    461. 14.461. Univalent type families
    462. 14.462. The universal property of booleans
    463. 14.463. The universal properties of cartesian product types
    464. 14.464. Universal property of contractible types
    465. 14.465. The universal property of coproduct types
    466. 14.466. The universal property of dependent function types
    467. 14.467. The universal property of dependent pair types
    468. 14.468. The universal property of the empty type
    469. 14.469. The universal property of equivalences
    470. 14.470. The universal property of the family of fibers of maps
    471. 14.471. The universal property of fiber products
    472. 14.472. The universal property of identity systems
    473. 14.473. The universal property of identity types
    474. 14.474. The universal property of the image of a map
    475. 14.475. The universal property of the maybe monad
    476. 14.476. The universal property of propositional truncations
    477. 14.477. The universal property of propositional truncations with respect to sets
    478. 14.478. The universal property of pullbacks
    479. 14.479. The universal property of sequential limits
    480. 14.480. The universal property of set quotients
    481. 14.481. The universal property of set truncations
    482. 14.482. The universal property of truncations
    483. 14.483. The universal property of the unit type
    484. 14.484. Universal quantification
    485. 14.485. Universe levels
    486. 14.486. Unordered pairs of elements in a type
    487. 14.487. Unordered pairs of types
    488. 14.488. Unordered n-tuples of elements in a type
    489. 14.489. Unordered tuples of types
    490. 14.490. Vertical composition of spans of spans
    491. 14.491. Weak function extensionality
    492. 14.492. The weak limited principle of omniscience
    493. 14.493. Weakly constant maps
    494. 14.494. Whiskering higher homotopies with respect to composition
    495. 14.495. Whiskering homotopies with respect to composition
    496. 14.496. Whiskering homotopies with respect to concatenation
    497. 14.497. Whiskering identifications with respect to concatenation
    498. 14.498. Whiskering operations
    499. 14.499. The wild category of types
    500. 14.500. Yoneda identity types
  17. 15. Foundation core
    ❱
    1. 15.1. 1-Types
    2. 15.2. Cartesian product types
    3. 15.3. Coherently invertible maps
    4. 15.4. Commuting prisms of maps
    5. 15.5. Commuting squares of homotopies
    6. 15.6. Commuting squares of identifications
    7. 15.7. Commuting squares of maps
    8. 15.8. Commuting triangles of maps
    9. 15.9. Constant maps
    10. 15.10. Contractible maps
    11. 15.11. Contractible types
    12. 15.12. Coproduct types
    13. 15.13. Decidable propositions
    14. 15.14. Dependent identifications
    15. 15.15. Diagonal maps into cartesian products of types
    16. 15.16. Discrete types
    17. 15.17. Embeddings
    18. 15.18. Empty types
    19. 15.19. Endomorphisms
    20. 15.20. Equality of dependent pair types
    21. 15.21. Equivalence relations
    22. 15.22. Equivalences
    23. 15.23. Families of equivalences
    24. 15.24. Fibers of maps
    25. 15.25. Function types
    26. 15.26. Functoriality of dependent function types
    27. 15.27. Functoriality of dependent pair types
    28. 15.28. Homotopies
    29. 15.29. Identity types
    30. 15.30. Injective maps
    31. 15.31. Invertible maps
    32. 15.32. Negation
    33. 15.33. Operations on span diagrams
    34. 15.34. Operations on spans
    35. 15.35. Path-split maps
    36. 15.36. Postcomposition of dependent functions
    37. 15.37. Postcomposition of functions
    38. 15.38. Precomposition of dependent functions
    39. 15.39. Precomposition of functions
    40. 15.40. Propositional maps
    41. 15.41. Propositions
    42. 15.42. Pullbacks
    43. 15.43. Retractions
    44. 15.44. Retracts of types
    45. 15.45. Sections
    46. 15.46. Sets
    47. 15.47. Small types
    48. 15.48. Subtypes
    49. 15.49. Torsorial type families
    50. 15.50. Transport along identifications
    51. 15.51. Truncated maps
    52. 15.52. Truncated types
    53. 15.53. Truncation levels
    54. 15.54. The type theoretic principle of choice
    55. 15.55. The univalence axiom
    56. 15.56. The universal property of pullbacks
    57. 15.57. The universal property of truncations
    58. 15.58. Whiskering homotopies with respect to concatenation
    59. 15.59. Whiskering identifications with respect to concatenation
  18. 16. Globular types
    ❱
    1. 16.1. Base change of dependent globular types
    2. 16.2. Base change of dependent reflexive globular types
    3. 16.3. Binary dependent globular types
    4. 16.4. Binary dependent reflexive globular types
    5. 16.5. Binary globular maps
    6. 16.6. Colax reflexive globular maps
    7. 16.7. Colax transitive globular maps
    8. 16.8. Composition structure on globular types
    9. 16.9. Constant globular types
    10. 16.10. Dependent globular types
    11. 16.11. Dependent reflexive globular types
    12. 16.12. Dependent sums of globular types
    13. 16.13. Discrete dependent reflexive globular types
    14. 16.14. Discrete globular types
    15. 16.15. Discrete reflexive globular types
    16. 16.16. Empty globular types
    17. 16.17. Equality of globular types
    18. 16.18. Exponentials of globular types
    19. 16.19. Fibers of globular maps
    20. 16.20. Equivalences between globular types
    21. 16.21. Maps between globular types
    22. 16.22. Globular types
    23. 16.23. Large colax reflexive globular maps
    24. 16.24. Large colax transitive globular maps
    25. 16.25. Maps between large globular types
    26. 16.26. Large globular types
    27. 16.27. Large lax reflexive globular maps
    28. 16.28. Large lax transitive globular maps
    29. 16.29. Large reflexive globular maps
    30. 16.30. Large reflexive globular types
    31. 16.31. Large symmetric globular types
    32. 16.32. Large transitive globular maps
    33. 16.33. Large transitive globular types
    34. 16.34. Lax reflexive globular maps
    35. 16.35. Lax transitive globular maps
    36. 16.36. Points of globular types
    37. 16.37. Points of reflexive globular types
    38. 16.38. Pointwise extensions of binary families of globular types
    39. 16.39. Pointwise extensions of binary families of reflexive globular types
    40. 16.40. Pointwise extensions of families of globular types
    41. 16.41. Pointwise extensions of families of reflexive globular types
    42. 16.42. Products of families of globular types
    43. 16.43. Reflexive globular equivalences
    44. 16.44. Reflexive globular maps
    45. 16.45. Reflexive globular types
    46. 16.46. Sections of dependent globular types
    47. 16.47. Superglobular types
    48. 16.48. Symmetric globular types
    49. 16.49. Terminal globular types
    50. 16.50. Transitive globular maps
    51. 16.51. Transitive globular types
    52. 16.52. The unit globular type
    53. 16.53. The unit reflexive globular type
    54. 16.54. The universal globular type
    55. 16.55. The universal reflexive globular type
  19. 17. Graph theory
    ❱
    1. 17.1. Acyclic undirected graphs
    2. 17.2. Base change of dependent directed graphs
    3. 17.3. Base change of dependent reflexive graphs
    4. 17.4. Cartesian products of directed graphs
    5. 17.5. Cartesian products of reflexive graphs
    6. 17.6. Circuits in undirected graphs
    7. 17.7. Closed walks in undirected graphs
    8. 17.8. Complete bipartite graphs
    9. 17.9. Complete multipartite graphs
    10. 17.10. Complete undirected graphs
    11. 17.11. Connected graphs
    12. 17.12. Cycles in undirected graphs
    13. 17.13. Dependent directed graphs
    14. 17.14. Dependent products of directed graphs
    15. 17.15. Dependent products of reflexive graphs
    16. 17.16. Dependent reflexive graphs
    17. 17.17. Dependent sums directed graphs
    18. 17.18. Dependent sums reflexive graphs
    19. 17.19. Directed graph duality
    20. 17.20. Directed graph structures on standard finite sets
    21. 17.21. Directed graphs
    22. 17.22. Discrete dependent reflexive graphs
    23. 17.23. Discrete directed graphs
    24. 17.24. Discrete reflexive graphs
    25. 17.25. Displayed large reflexive graphs
    26. 17.26. Edge-colored undirected graphs
    27. 17.27. Embeddings of directed graphs
    28. 17.28. Embeddings of undirected graphs
    29. 17.29. Enriched undirected graphs
    30. 17.30. Equivalences of dependent directed graphs
    31. 17.31. Equivalences of dependent reflexive graphs
    32. 17.32. Equivalences of directed graphs
    33. 17.33. Equivalences of enriched undirected graphs
    34. 17.34. Equivalences of reflexive graphs
    35. 17.35. Equivalences of undirected graphs
    36. 17.36. Eulerian circuits in undirected graphs
    37. 17.37. Faithful morphisms of undirected graphs
    38. 17.38. Fibers of directed graphs
    39. 17.39. Fibers of morphisms into directed graphs
    40. 17.40. Fibers of morphisms into reflexive graphs
    41. 17.41. Finite graphs
    42. 17.42. Geometric realizations of undirected graphs
    43. 17.43. Higher directed graphs
    44. 17.44. Hypergraphs
    45. 17.45. Internal homs of directed graphs
    46. 17.46. Large higher directed graphs
    47. 17.47. Large reflexive graphs
    48. 17.48. Matchings
    49. 17.49. Mere equivalences of undirected graphs
    50. 17.50. Morphisms of dependent directed graphs
    51. 17.51. Morphisms of directed graphs
    52. 17.52. Morphisms of reflexive graphs
    53. 17.53. Morphisms of undirected graphs
    54. 17.54. Incidence in undirected graphs
    55. 17.55. Orientations of undirected graphs
    56. 17.56. Paths in undirected graphs
    57. 17.57. Polygons
    58. 17.58. Raising universe levels of directed graphs
    59. 17.59. Reflecting maps of undirected graphs
    60. 17.60. Reflexive graphs
    61. 17.61. Regular undirected graph
    62. 17.62. Sections of dependent directed graphs
    63. 17.63. Sections of dependent reflexive graphs
    64. 17.64. Simple undirected graphs
    65. 17.65. Stereoisomerism for enriched undirected graphs
    66. 17.66. Terminal directed graphs
    67. 17.67. Terminal reflexive graphs
    68. 17.68. Totally faithful morphisms of undirected graphs
    69. 17.69. Trails in directed graphs
    70. 17.70. Trails in undirected graphs
    71. 17.71. Undirected graph structures on standard finite sets
    72. 17.72. Undirected graphs
    73. 17.73. The universal directed graph
    74. 17.74. The universal reflexive graph
    75. 17.75. Vertex covers
    76. 17.76. Voltage graphs
    77. 17.77. Walks in directed graphs
    78. 17.78. Walks in undirected graphs
    79. 17.79. Wide displayed large reflexive graphs
  20. 18. Group theory
    ❱
    1. 18.1. Abelian groups
    2. 18.2. Abelianization of groups
    3. 18.3. Pointwise addition of morphisms of abelian groups
    4. 18.4. Arithmetic sequences in semigroups
    5. 18.5. Automorphism groups
    6. 18.6. Cartesian products of abelian groups
    7. 18.7. Cartesian products of concrete groups
    8. 18.8. Cartesian products of groups
    9. 18.9. Cartesian products of monoids
    10. 18.10. Cartesian products of semigroups
    11. 18.11. The category of abelian groups
    12. 18.12. The category of concrete groups
    13. 18.13. The category of group actions
    14. 18.14. The category of groups
    15. 18.15. The orbit category of a group
    16. 18.16. The category of semigroups
    17. 18.17. Cayley's theorem
    18. 18.18. The center of a group
    19. 18.19. Center of a monoid
    20. 18.20. Center of a semigroup
    21. 18.21. Central elements of groups
    22. 18.22. Central elements of monoids
    23. 18.23. Central elements of semirings
    24. 18.24. Centralizer subgroups
    25. 18.25. Characteristic subgroups
    26. 18.26. Commutative monoids
    27. 18.27. Commutator subgroups
    28. 18.28. Commutators of elements in groups
    29. 18.29. Commuting elements of groups
    30. 18.30. Commuting elements of monoids
    31. 18.31. Commuting elements of semigroups
    32. 18.32. Commuting squares of group homomorphisms
    33. 18.33. Concrete group actions
    34. 18.34. Concrete groups
    35. 18.35. Concrete monoids
    36. 18.36. Congruence relations on abelian groups
    37. 18.37. Congruence relations on commutative monoids
    38. 18.38. Congruence relations on groups
    39. 18.39. Congruence relations on monoids
    40. 18.40. Congruence relations on semigroups
    41. 18.41. Conjugation in groups
    42. 18.42. Conjugation on concrete groups
    43. 18.43. Contravariant pushforwards of concrete group actions
    44. 18.44. Cores of monoids
    45. 18.45. Cyclic groups
    46. 18.46. Decidable subgroups of groups
    47. 18.47. Dependent products of abelian groups
    48. 18.48. Dependent products of commutative monoids
    49. 18.49. Dependent products of groups
    50. 18.50. Dependent products of monoids
    51. 18.51. Dependent products of semigroups
    52. 18.52. The dihedral group construction
    53. 18.53. The dihedral groups
    54. 18.54. The E₈-lattice
    55. 18.55. Elements of finite order
    56. 18.56. Embeddings of abelian groups
    57. 18.57. Embeddings of groups
    58. 18.58. The endomorphism rings of abelian groups
    59. 18.59. Epimorphisms in groups
    60. 18.60. Equivalences of concrete group actions
    61. 18.61. Equivalences of concrete groups
    62. 18.62. Equivalences of group actions
    63. 18.63. Equivalences between semigroups
    64. 18.64. Exponents of abelian groups
    65. 18.65. Exponents of groups
    66. 18.66. Free concrete group actions
    67. 18.67. Free groups with one generator
    68. 18.68. The full subgroup of a group
    69. 18.69. The full subsemigroup of a semigroup
    70. 18.70. Function groups of abelian groups
    71. 18.71. Function commutative monoids
    72. 18.72. Function groups
    73. 18.73. Function monoids
    74. 18.74. Function semigroups
    75. 18.75. Functoriality of quotient groups
    76. 18.76. Furstenberg groups
    77. 18.77. Generating elements of groups
    78. 18.78. Generating sets of groups
    79. 18.79. Group actions
    80. 18.80. Abstract groups
    81. 18.81. Homomorphisms of abelian groups
    82. 18.82. Homomorphisms of commutative monoids
    83. 18.83. Morphisms of concrete group actions
    84. 18.84. Homomorphisms of concrete groups
    85. 18.85. Homomorphisms of generated subgroups
    86. 18.86. Homomorphisms of group actions
    87. 18.87. Homomorphisms of groups
    88. 18.88. Homomorphisms of groups equipped with normal subgroups
    89. 18.89. Homomorphisms of monoids
    90. 18.90. Homomorphisms of semigroups
    91. 18.91. Homotopy automorphism groups
    92. 18.92. Images of group homomorphisms
    93. 18.93. Images of semigroup homomorphisms
    94. 18.94. Integer multiples of elements in abelian groups
    95. 18.95. Integer powers of elements of groups
    96. 18.96. Intersections of subgroups of abelian groups
    97. 18.97. Intersections of subgroups of groups
    98. 18.98. Inverse semigroups
    99. 18.99. Invertible elements in monoids
    100. 18.100. Isomorphisms of abelian groups
    101. 18.101. Isomorphisms of concrete groups
    102. 18.102. Isomorphisms of group actions
    103. 18.103. Isomorphisms of groups
    104. 18.104. Isomorphisms of monoids
    105. 18.105. Isomorphisms of semigroups
    106. 18.106. Iterated cartesian products of concrete groups
    107. 18.107. Kernels of homomorphisms between abelian groups
    108. 18.108. Kernels of homomorphisms of concrete groups
    109. 18.109. Kernels of homomorphisms of groups
    110. 18.110. Large semigroups
    111. 18.111. Concrete automorphism groups on sets
    112. 18.112. Mere equivalences of concrete group actions
    113. 18.113. Mere equivalences of group actions
    114. 18.114. Minkowski multiplication of subsets of a commutative monoid
    115. 18.115. Minkowski multiplication on subsets of a monoid
    116. 18.116. Minkowski multiplication on subsets of a semigroup
    117. 18.117. Monoid actions
    118. 18.118. Monoids
    119. 18.119. Monomorphisms of concrete groups
    120. 18.120. Monomorphisms in the category of groups
    121. 18.121. Multiples of elements in abelian groups
    122. 18.122. Nontrivial groups
    123. 18.123. Normal closures of subgroups
    124. 18.124. Normal cores of subgroups
    125. 18.125. Normal subgroups
    126. 18.126. Normal subgroups of concrete groups
    127. 18.127. Normal submonoids
    128. 18.128. Normal submonoids of commutative monoids
    129. 18.129. Normalizer subgroups
    130. 18.130. Nullifying group homomorphisms
    131. 18.131. The opposite of a group
    132. 18.132. The opposite of a semigroup
    133. 18.133. The orbit-stabilizer theorem for concrete groups
    134. 18.134. Orbits of concrete group actions
    135. 18.135. Orbits of group actions
    136. 18.136. The order of an element in a group
    137. 18.137. Perfect cores
    138. 18.138. Perfect groups
    139. 18.139. Perfect subgroups
    140. 18.140. Powers of elements in commutative monoids
    141. 18.141. Powers of elements in groups
    142. 18.142. Powers of elements in monoids
    143. 18.143. The precategory of commutative monoids
    144. 18.144. The precategory of concrete groups
    145. 18.145. The precategory of group actions
    146. 18.146. The precategory of groups
    147. 18.147. The precategory of monoids
    148. 18.148. The precategory of orbits of a monoid action
    149. 18.149. The precategory of semigroups
    150. 18.150. Principal group actions
    151. 18.151. Principal torsors of concrete groups
    152. 18.152. Products of elements in a monoid
    153. 18.153. Pullbacks of subgroups
    154. 18.154. Pullbacks of subsemigroups
    155. 18.155. Quotient groups
    156. 18.156. Quotient groups of concrete groups
    157. 18.157. Quotients of abelian groups
    158. 18.158. Rational commutative monoids
    159. 18.159. Representations of monoids in precategories
    160. 18.160. Saturated congruence relations on commutative monoids
    161. 18.161. Saturated congruence relations on monoids
    162. 18.162. Semigroups
    163. 18.163. Sheargroups
    164. 18.164. Shriek of concrete group homomorphisms
    165. 18.165. Stabilizer groups
    166. 18.166. Stabilizers of concrete group actions
    167. 18.167. Subgroups
    168. 18.168. Subgroups of abelian groups
    169. 18.169. Subgroups of concrete groups
    170. 18.170. Subgroups generated by elements of a group
    171. 18.171. Subgroups generated by families of elements
    172. 18.172. Subgroups generated by subsets of groups
    173. 18.173. Submonoids
    174. 18.174. Submonoids of commutative monoids
    175. 18.175. Subsemigroups
    176. 18.176. Subsets of abelian groups
    177. 18.177. Subsets of commutative monoids
    178. 18.178. Subsets of groups
    179. 18.179. Subsets of monoids
    180. 18.180. Subsets of semigroups
    181. 18.181. The substitution functor of concrete group actions
    182. 18.182. The substitution functor of group actions
    183. 18.183. Sums of finite families of elements in commutative monoids
    184. 18.184. Sums of finite sequences of elements in commutative monoids
    185. 18.185. Sums of finite sequences of elements in monoids
    186. 18.186. Surjective group homomorphisms
    187. 18.187. Surjective semigroup homomorphisms
    188. 18.188. Symmetric concrete groups
    189. 18.189. Symmetric groups
    190. 18.190. Torsion elements of groups
    191. 18.191. Torsion-free groups
    192. 18.192. Torsors of abstract groups
    193. 18.193. Transitive concrete group actions
    194. 18.194. Transitive group actions
    195. 18.195. Trivial concrete groups
    196. 18.196. Trivial group homomorphisms
    197. 18.197. Trivial groups
    198. 18.198. Trivial subgroups
    199. 18.199. Unordered tuples of elements in commutative monoids
    200. 18.200. Wild representations of monoids
  21. 19. Higher group theory
    ❱
    1. 19.1. Abelian higher groups
    2. 19.2. Automorphism groups
    3. 19.3. Cartesian products of higher groups
    4. 19.4. Conjugation in higher groups
    5. 19.5. Cyclic higher groups
    6. 19.6. Deloopable groups
    7. 19.7. Deloopable H-spaces
    8. 19.8. Deloopable types
    9. 19.9. Eilenberg-Mac Lane spaces
    10. 19.10. Equivalences of higher groups
    11. 19.11. Fixed points of higher group actions
    12. 19.12. Free higher group actions
    13. 19.13. Higher group actions
    14. 19.14. Higher groups
    15. 19.15. Homomorphisms of higher group actions
    16. 19.16. Homomorphisms of higher groups
    17. 19.17. The higher group of integers
    18. 19.18. Iterated cartesian products of higher groups
    19. 19.19. Iterated deloopings of pointed types
    20. 19.20. Orbits of higher group actions
    21. 19.21. Small ∞-groups
    22. 19.22. Subgroups of higher groups
    23. 19.23. Symmetric higher groups
    24. 19.24. Transitive higher group actions
    25. 19.25. Trivial higher groups
  22. 20. Linear algebra
    ❱
    1. 20.1. Constant matrices
    2. 20.2. Diagonal tuples
    3. 20.3. Diagonal matrices on rings
    4. 20.4. Finite sequences in commutative monoids
    5. 20.5. Finite sequences in commutative rings
    6. 20.6. Finite sequences in commutative semirings
    7. 20.7. Finite sequences in euclidean domains
    8. 20.8. Finite sequences in monoids
    9. 20.9. Finite sequences in rings
    10. 20.10. Finite sequences in semirings
    11. 20.11. Functoriality of the type of matrices
    12. 20.12. Left modules over rings
    13. 20.13. Linear maps between left modules over rings
    14. 20.14. Matrices
    15. 20.15. Matrices on rings
    16. 20.16. Multiplication of matrices
    17. 20.17. Right modules over rings
    18. 20.18. Scalar multiplication on matrices
    19. 20.19. Scalar multiplication of tuples
    20. 20.20. Scalar multiplication of tuples on rings
    21. 20.21. Transposition of matrices
    22. 20.22. Tuples on commutative monoids
    23. 20.23. Tuples on commutative rings
    24. 20.24. Tuples on commutative semirings
    25. 20.25. Tuples on euclidean domains
    26. 20.26. Tuples on monoids
    27. 20.27. Tuples on rings
    28. 20.28. Tuples on semirings
  23. 21. Lists
    ❱
    1. 21.1. Arrays
    2. 21.2. Concatenation of lists
    3. 21.3. The equivalence between tuples and finite sequences
    4. 21.4. Finite sequences
    5. 21.5. Flattening of lists
    6. 21.6. Functoriality of the type of finite sequences
    7. 21.7. Functoriality of the list operation
    8. 21.8. Functoriality of the type of tuples
    9. 21.9. Relationship between functoriality of tuples and finite sequences
    10. 21.10. Lists
    11. 21.11. Lists of elements in discrete types
    12. 21.12. Permutations of lists
    13. 21.13. Permutations of tuples
    14. 21.14. Predicates on lists
    15. 21.15. Quicksort for lists
    16. 21.16. Reversing lists
    17. 21.17. Sort by insertion for lists
    18. 21.18. Sort by insertion for tuples
    19. 21.19. Sorted lists
    20. 21.20. Sorted tuples
    21. 21.21. Sorting algorithms for lists
    22. 21.22. Sorting algorithms for tuples
    23. 21.23. Tuples
    24. 21.24. The universal property of lists with respect to wild monoids
  24. 22. Logic
    ❱
    1. 22.1. Complements of De Morgan subtypes
    2. 22.2. Complements of decidable subtypes
    3. 22.3. Complements of double negation stable subtypes
    4. 22.4. De Morgan embeddings
    5. 22.5. De Morgan maps
    6. 22.6. De Morgan propositions
    7. 22.7. De Morgan subtypes
    8. 22.8. De Morgan types
    9. 22.9. De Morgan's law
    10. 22.10. Double negation eliminating maps
    11. 22.11. Double negation elimination
    12. 22.12. Double negation stable embeddings
    13. 22.13. Double negation stable subtypes
    14. 22.14. Functoriality of existential quantification
    15. 22.15. Markovian types
    16. 22.16. Markov's principle
  25. 23. Metric spaces
    ❱
    1. 23.1. The category of metric spaces and isometries
    2. 23.2. The category of metric spaces and short maps
    3. 23.3. Cauchy approximations in metric spaces
    4. 23.4. Cauchy approximations in premetric spaces
    5. 23.5. Cauchy sequences in complete metric spaces
    6. 23.6. Cauchy sequences in metric spaces
    7. 23.7. Closed premetric structures
    8. 23.8. Complete metric spaces
    9. 23.9. Continuous functions between metric spaces
    10. 23.10. Continuous functions between premetric spaces
    11. 23.11. Convergent Cauchy approximations in metric spaces
    12. 23.12. Convergent sequences in metric spaces
    13. 23.13. Dependent products of metric spaces
    14. 23.14. Discrete premetric structures
    15. 23.15. Elements at bounded distance in metric spaces
    16. 23.16. Equality of metric spaces
    17. 23.17. Equality of premetric spaces
    18. 23.18. Extensional premetric structures on types
    19. 23.19. Functions between metric spaces
    20. 23.20. The functor from the precategory of metric spaces and isometries to the precategory of sets
    21. 23.21. The inclusion of isometries into the category of metric spaces and short maps
    22. 23.22. Induced premetric structures on preimages
    23. 23.23. Isometric equivalences between premetric spaces
    24. 23.24. Isometries between metric spaces
    25. 23.25. Isometries between premetric spaces
    26. 23.26. Limits of Cauchy approximations in premetric spaces
    27. 23.27. Limits of sequences in metric spaces
    28. 23.28. Limits of sequences in premetric spaces
    29. 23.29. Limits of sequences in pseudometric spaces
    30. 23.30. Lipschitz functions between metric spaces
    31. 23.31. The metric space of Cauchy approximations in a complete metric space
    32. 23.32. The metric space of Cauchy approximations in a metric space
    33. 23.33. The metric space of Cauchy approximations in a saturated complete metric space
    34. 23.34. The metric space of convergent Cauchy approximations in a metric space
    35. 23.35. The metric space of convergent sequences in metric spaces
    36. 23.36. The metric space of functions between metric spaces
    37. 23.37. The metric space of isometries between metric spaces
    38. 23.38. The metric space of Lipschitz functions between metric spaces
    39. 23.39. The standard metric structure on the rational numbers
    40. 23.40. The metric structure on the rational numbers with open neighborhoods
    41. 23.41. The metric space of short functions between metric spaces
    42. 23.42. Metric spaces
    43. 23.43. Metric structures
    44. 23.44. Monotonic premetric structures on types
    45. 23.45. The poset of premetric structures on a type
    46. 23.46. The precategory of metric spaces and functions
    47. 23.47. The precategory of metric spaces and isometries
    48. 23.48. The precategory of metric spaces and short functions
    49. 23.49. Premetric spaces
    50. 23.50. Premetric structures on types
    51. 23.51. Pseudometric spaces
    52. 23.52. Pseudometric structures on a type
    53. 23.53. Rational approximations of zero
    54. 23.54. Rational Cauchy approximations
    55. 23.55. Rational sequences approximating zero
    56. 23.56. Reflexive premetric structures on types
    57. 23.57. Saturated complete metric spaces
    58. 23.58. Saturated metric spaces
    59. 23.59. Sequences in metric spaces
    60. 23.60. Sequences in premetric spaces
    61. 23.61. Sequences in pseudometric spaces
    62. 23.62. Short functions between metric spaces
    63. 23.63. Short functions between premetric spaces
    64. 23.64. Subspaces of metric spaces
    65. 23.65. Symmetric premetric structures on types
    66. 23.66. Triangular premetric structures on types
    67. 23.67. Uniformly continuous functions between metric spaces
    68. 23.68. Uniformly continuous functions between premetric spaces
  26. 24. Modal type theory
    ❱
    1. 24.1. The action on homotopies of the flat modality
    2. 24.2. The action on identifications of crisp functions
    3. 24.3. The action on identifications of the flat modality
    4. 24.4. Crisp cartesian product types
    5. 24.5. Crisp coproduct types
    6. 24.6. Crisp dependent function types
    7. 24.7. Crisp dependent pair types
    8. 24.8. Crisp function types
    9. 24.9. Crisp identity types
    10. 24.10. The crisp law of excluded middle
    11. 24.11. Crisp pullbacks
    12. 24.12. Crisp types
    13. 24.13. Dependent universal property of flat discrete crisp types
    14. 24.14. Flat discrete crisp types
    15. 24.15. The flat modality
    16. 24.16. The flat-sharp adjunction
    17. 24.17. Functoriality of the flat modality
    18. 24.18. Functoriality of the sharp modality
    19. 24.19. Sharp codiscrete maps
    20. 24.20. Sharp codiscrete types
    21. 24.21. The sharp modality
    22. 24.22. Transport along crisp identifications
    23. 24.23. The universal property of flat discrete crisp types
  27. 25. Order theory
    ❱
    1. 25.1. Accessible elements with respect to relations
    2. 25.2. Bottom elements in large posets
    3. 25.3. Bottom elements in posets
    4. 25.4. Bottom elements in preorders
    5. 25.5. Chains in posets
    6. 25.6. Chains in preorders
    7. 25.7. Closure operators on large locales
    8. 25.8. Closure operators on large posets
    9. 25.9. Commuting squares of Galois connections between large posets
    10. 25.10. Commuting squares of order preserving maps of large posets
    11. 25.11. Coverings in locales
    12. 25.12. Decidable posets
    13. 25.13. Decidable preorders
    14. 25.14. Decidable subposets
    15. 25.15. Decidable subpreorders
    16. 25.16. Decidable total orders
    17. 25.17. Decidable total preorders
    18. 25.18. Deflationary maps on a poset
    19. 25.19. Deflationary maps on a preorder
    20. 25.20. Dependent products of large frames
    21. 25.21. Dependent products of large inflattices
    22. 25.22. Dependent products of large locales
    23. 25.23. Dependent products of large meet-semilattices
    24. 25.24. Dependent products of large posets
    25. 25.25. Dependent products of large preorders
    26. 25.26. Dependent products of large suplattices
    27. 25.27. Distributive lattices
    28. 25.28. Finite coverings in locales
    29. 25.29. Finite posets
    30. 25.30. Finite preorders
    31. 25.31. Finite total orders
    32. 25.32. Finitely graded posets
    33. 25.33. Frames
    34. 25.34. Galois connections
    35. 25.35. Galois connections between large posets
    36. 25.36. Greatest lower bounds in large posets
    37. 25.37. Greatest lower bounds in posets
    38. 25.38. Homomorphisms of frames
    39. 25.39. Homomorphisms of large frames
    40. 25.40. Homomorphisms of large locales
    41. 25.41. Homomorphisms of large meet-semilattices
    42. 25.42. Homomorphisms of large suplattices
    43. 25.43. Homomorphisms of meet-semilattices
    44. 25.44. Homomorphisms of meet-suplattices
    45. 25.45. Homomorphisms of suplattices
    46. 25.46. Ideals in preorders
    47. 25.47. Incidence algebras
    48. 25.48. Increasing sequences in partially ordered sets
    49. 25.49. Inflationary maps on a poset
    50. 25.50. Inflationary maps on a preorder
    51. 25.51. Inflattices
    52. 25.52. Inhabited chains in posets
    53. 25.53. Inhabited chains in preorders
    54. 25.54. Inhabited finite total orders
    55. 25.55. Interval subposets
    56. 25.56. Join preserving maps between posets
    57. 25.57. Join-semilattices
    58. 25.58. The Knaster–Tarski fixed point theorem
    59. 25.59. Large frames
    60. 25.60. Large inflattices
    61. 25.61. Large join-semilattices
    62. 25.62. Large locales
    63. 25.63. Large meet-semilattices
    64. 25.64. Large meet-subsemilattices
    65. 25.65. Large posets
    66. 25.66. Large preorders
    67. 25.67. Large quotient locales
    68. 25.68. Large strict orders
    69. 25.69. Large strict preorders
    70. 25.70. Large subframes
    71. 25.71. Large subposets
    72. 25.72. Large subpreorders
    73. 25.73. Large subsuplattices
    74. 25.74. Large suplattices
    75. 25.75. Lattices
    76. 25.76. Least upper bounds in large posets
    77. 25.77. Least upper bounds in posets
    78. 25.78. Locales
    79. 25.79. Locally finite posets
    80. 25.80. Lower bounds in large posets
    81. 25.81. Lower bounds in posets
    82. 25.82. Lower sets in large posets
    83. 25.83. Lower types in preorders
    84. 25.84. Maximal chains in posets
    85. 25.85. Maximal chains in preorders
    86. 25.86. Meet-semilattices
    87. 25.87. Meet-suplattices
    88. 25.88. Nuclei on large locales
    89. 25.89. Opposite large posets
    90. 25.90. Opposite large preorders
    91. 25.91. Opposite posets
    92. 25.92. Opposite preorders
    93. 25.93. Order preserving maps between large posets
    94. 25.94. Order preserving maps between large preorders
    95. 25.95. Order preserving maps between posets
    96. 25.96. Order preserving maps between preorders
    97. 25.97. Ordinals
    98. 25.98. Posets
    99. 25.99. Powers of large locales
    100. 25.100. The precategory of decidable total orders
    101. 25.101. The precategory of finite posets
    102. 25.102. The precategory of finite total orders
    103. 25.103. The precategory of inhabited finite total orders
    104. 25.104. The precategory of posets
    105. 25.105. The precategory of total orders
    106. 25.106. Preorders
    107. 25.107. Principal lower sets of large posets
    108. 25.108. Principal upper sets of large posets
    109. 25.109. Reflective Galois connections between large posets
    110. 25.110. Resizing posets
    111. 25.111. Resizing preorders
    112. 25.112. Resizing suplattices
    113. 25.113. Sequences in partially ordered sets
    114. 25.114. Sequences in preorders
    115. 25.115. Sequences in strictly preordered sets
    116. 25.116. Similarity of elements in large posets
    117. 25.117. Similarity of elements in large preorders
    118. 25.118. Similarity of elements in large strict orders
    119. 25.119. Similarity of elements in large strict preorders
    120. 25.120. Similarity of elements in strict orders
    121. 25.121. Similarity of elements in strict preorders
    122. 25.122. Similarity of order preserving maps between large posets
    123. 25.123. Similarity of order preserving maps between large preorders
    124. 25.124. Strict order preserving maps
    125. 25.125. Strict orders
    126. 25.126. Strict preorders
    127. 25.127. Strictly increasing sequences in strictly preordered sets
    128. 25.128. Strictly inflationary maps on a strictly preordered type
    129. 25.129. Strictly preordered sets
    130. 25.130. Subposets
    131. 25.131. Subpreorders
    132. 25.132. Suplattices
    133. 25.133. Supremum preserving maps between posets
    134. 25.134. Top elements in large posets
    135. 25.135. Top elements in posets
    136. 25.136. Top elements in preorders
    137. 25.137. Total orders
    138. 25.138. Total preorders
    139. 25.139. Transitive well-founded relations
    140. 25.140. Transposing inequalities in posets along order-preserving retractions
    141. 25.141. Transposing inequalities in posets along sections of order-preserving maps
    142. 25.142. Upper bounds of chains in posets
    143. 25.143. Upper bounds in large posets
    144. 25.144. Upper bounds in posets
    145. 25.145. Upper sets of large posets
    146. 25.146. Well-founded relations
    147. 25.147. Zorn's lemma
  28. 26. Organic chemistry
    ❱
    1. 26.1. Alcohols
    2. 26.2. Alkanes
    3. 26.3. Alkenes
    4. 26.4. Alkynes
    5. 26.5. Ethane
    6. 26.6. Hydrocarbons
    7. 26.7. Methane
    8. 26.8. Saturated carbons
  29. 27. Orthogonal factorization systems
    ❱
    1. 27.1. Cd-structures
    2. 27.2. Cellular maps
    3. 27.3. The closed modalities
    4. 27.4. Continuation modalities
    5. 27.5. Double lifts of families of elements
    6. 27.6. Double negation sheaves
    7. 27.7. Extensions of double lifts of families of elements
    8. 27.8. Extensions of families of elements
    9. 27.9. Extensions of maps
    10. 27.10. Factorization operations
    11. 27.11. Factorization operations into function classes
    12. 27.12. Factorization operations into global function classes
    13. 27.13. Factorizations of maps
    14. 27.14. Factorizations of maps into function classes
    15. 27.15. Factorizations of maps into global function classes
    16. 27.16. Families of types local at a map
    17. 27.17. Fiberwise orthogonal maps
    18. 27.18. Function classes
    19. 27.19. Functoriality of higher modalities
    20. 27.20. Functoriality of localizations at global subuniverses
    21. 27.21. Functoriality of the pullback-hom
    22. 27.22. Functoriality of reflective global subuniverses
    23. 27.23. Global function classes
    24. 27.24. Higher modalities
    25. 27.25. The identity modality
    26. 27.26. Large Lawvere–Tierney topologies
    27. 27.27. Lawvere–Tierney topologies
    28. 27.28. Lifting operations
    29. 27.29. Lifting structures on commuting squares of maps
    30. 27.30. Lifts of families of elements
    31. 27.31. Lifts of maps
    32. 27.32. Localizations at global subuniverses
    33. 27.33. Localizations at maps
    34. 27.34. Localizations at subuniverses
    35. 27.35. Locally small modal-operators
    36. 27.36. Maps local at maps
    37. 27.37. Mere lifting properties
    38. 27.38. Modal induction
    39. 27.39. Modal operators
    40. 27.40. Modal subuniverse induction
    41. 27.41. Null families of types
    42. 27.42. Null maps
    43. 27.43. Null types
    44. 27.44. The open modalities
    45. 27.45. Orthogonal factorization systems
    46. 27.46. Orthogonal maps
    47. 27.47. Precomposition of lifts of families of elements by maps
    48. 27.48. The pullback-hom
    49. 27.49. The raise modalities
    50. 27.50. Reflective global subuniverses
    51. 27.51. Reflective modalities
    52. 27.52. Reflective subuniverses
    53. 27.53. Regular cd-structures
    54. 27.54. Σ-closed modalities
    55. 27.55. Σ-closed reflective modalities
    56. 27.56. Σ-closed reflective subuniverses
    57. 27.57. Stable orthogonal factorization systems
    58. 27.58. Types colocal at maps
    59. 27.59. Types local at maps
    60. 27.60. Types separated at maps
    61. 27.61. Uniquely eliminating modalities
    62. 27.62. The universal property of localizations at global subuniverses
    63. 27.63. Wide function classes
    64. 27.64. Wide global function classes
    65. 27.65. The zero modality
  30. 28. Polytopes
    ❱
    1. 28.1. Abstract polytopes
  31. 29. Primitives
    ❱
    1. 29.1. Characters
    2. 29.2. Floats
    3. 29.3. Machine integers
    4. 29.4. Strings
  32. 30. Real numbers
    ❱
    1. 30.1. The absolute value of real numbers
    2. 30.2. Addition of lower Dedekind real numbers
    3. 30.3. Addition of Dedekind real numbers
    4. 30.4. Addition of upper Dedekind real numbers
    5. 30.5. Apartness of real numbers
    6. 30.6. Arithmetically located Dedekind cuts
    7. 30.7. Cauchy completeness of the Dedekind real numbers
    8. 30.8. Dedekind real numbers
    9. 30.9. The difference between real numbers
    10. 30.10. The distance between real numbers
    11. 30.11. Inequality on the lower Dedekind real numbers
    12. 30.12. Inequality on the real numbers
    13. 30.13. Inequality on the upper Dedekind real numbers
    14. 30.14. The addition isometry on real numbers
    15. 30.15. The negation isometry on real numbers
    16. 30.16. Lower Dedekind real numbers
    17. 30.17. The maximum of lower Dedekind real numbers
    18. 30.18. The maximum of real numbers
    19. 30.19. The maximum of upper Dedekind real numbers
    20. 30.20. The metric space of real numbers
    21. 30.21. The minimum of lower Dedekind real numbers
    22. 30.22. The minimum of real numbers
    23. 30.23. The minimum of upper Dedekind real numbers
    24. 30.24. Negation of lower and upper Dedekind real numbers
    25. 30.25. Negation of real numbers
    26. 30.26. Nonnegative real numbers
    27. 30.27. Positive real numbers
    28. 30.28. Raising the universe levels of real numbers
    29. 30.29. Rational lower Dedekind real numbers
    30. 30.30. Rational real numbers
    31. 30.31. Rational upper Dedekind real numbers
    32. 30.32. Similarity of real numbers
    33. 30.33. Strict inequality of real numbers
    34. 30.34. Transposition of addition and subtraction through cuts of Dedekind real numbers
    35. 30.35. Upper Dedekind real numbers
  33. 31. Reflection
    ❱
    1. 31.1. Abstractions
    2. 31.2. Arguments
    3. 31.3. Boolean reflection
    4. 31.4. Definitions
    5. 31.5. Erasing equality
    6. 31.6. Fixity
    7. 31.7. Group solver
    8. 31.8. Literals
    9. 31.9. Metavariables
    10. 31.10. Names
    11. 31.11. Precategory solver
    12. 31.12. Rewriting
    13. 31.13. Terms
    14. 31.14. The type checking monad
  34. 32. Ring theory
    ❱
    1. 32.1. Additive orders of elements of rings
    2. 32.2. Algebras over rings
    3. 32.3. The binomial theorem for rings
    4. 32.4. The binomial theorem for semirings
    5. 32.5. The category of cyclic rings
    6. 32.6. The category of rings
    7. 32.7. Central elements of rings
    8. 32.8. Central elements of semirings
    9. 32.9. Characteristics of rings
    10. 32.10. Commuting elements of rings
    11. 32.11. Congruence relations on rings
    12. 32.12. Congruence relations on semirings
    13. 32.13. Cyclic rings
    14. 32.14. Dependent products of rings
    15. 32.15. Dependent products of semirings
    16. 32.16. Division rings
    17. 32.17. The free ring with one generator
    18. 32.18. Full ideals of rings
    19. 32.19. Function rings
    20. 32.20. Function semirings
    21. 32.21. Generating elements of rings
    22. 32.22. The group of multiplicative units of a ring
    23. 32.23. Homomorphisms of cyclic rings
    24. 32.24. Homomorphisms of rings
    25. 32.25. Homomorphisms of semirings
    26. 32.26. Ideals generated by subsets of rings
    27. 32.27. Ideals of rings
    28. 32.28. Ideals of semirings
    29. 32.29. Idempotent elements in rings
    30. 32.30. Initial rings
    31. 32.31. Integer multiples of elements of rings
    32. 32.32. Intersections of ideals of rings
    33. 32.33. Intersections of ideals of semirings
    34. 32.34. The invariant basis property of rings
    35. 32.35. Invertible elements in rings
    36. 32.36. Isomorphisms of rings
    37. 32.37. Joins of ideals of rings
    38. 32.38. Joins of left ideals of rings
    39. 32.39. Joins of right ideals of rings
    40. 32.40. Kernels of ring homomorphisms
    41. 32.41. Left ideals generated by subsets of rings
    42. 32.42. Left ideals of rings
    43. 32.43. Local rings
    44. 32.44. Localizations of rings
    45. 32.45. Maximal ideals of rings
    46. 32.46. Multiples of elements in rings
    47. 32.47. Multiplicative orders of elements of rings
    48. 32.48. Nil ideals of rings
    49. 32.49. Nilpotent elements in rings
    50. 32.50. Nilpotent elements in semirings
    51. 32.51. Opposite rings
    52. 32.52. The poset of cyclic rings
    53. 32.53. The poset of ideals of a ring
    54. 32.54. The poset of left ideals of a ring
    55. 32.55. The poset of right ideals of a ring
    56. 32.56. Powers of elements in rings
    57. 32.57. Powers of elements in semirings
    58. 32.58. The precategory of rings
    59. 32.59. The precategory of semirings
    60. 32.60. Products of ideals of rings
    61. 32.61. Products of left ideals of rings
    62. 32.62. Products of right ideals of rings
    63. 32.63. Products of rings
    64. 32.64. Products of subsets of rings
    65. 32.65. Quotient rings
    66. 32.66. Radical ideals of rings
    67. 32.67. Right ideals generated by subsets of rings
    68. 32.68. Right ideals of rings
    69. 32.69. Rings
    70. 32.70. Semirings
    71. 32.71. Subsets of rings
    72. 32.72. Subsets of semirings
    73. 32.73. Sums of finite families of elements in rings
    74. 32.74. Sums of finite families of elements in semirings
    75. 32.75. Sums of finite sequences in rings
    76. 32.76. Sums of finite sequences in semirings
    77. 32.77. Transporting ring structures along isomorphisms of abelian groups
    78. 32.78. Trivial rings
  35. 33. Set theory
    ❱
    1. 33.1. Baire space
    2. 33.2. Cantor space
    3. 33.3. Cantor's diagonal argument
    4. 33.4. Cardinalities of sets
    5. 33.5. Countable sets
    6. 33.6. Cumulative hierarchy
    7. 33.7. Infinite sets
    8. 33.8. Russell's paradox
    9. 33.9. Uncountable sets
  36. 34. Species
    ❱
    1. 34.1. Cartesian exponents of species
    2. 34.2. Cartesian products of species of types
    3. 34.3. Cauchy composition of species of types
    4. 34.4. Cauchy composition of species of types in a subuniverse
    5. 34.5. Cauchy exponentials of species of types
    6. 34.6. Cauchy exponentials of species of types in a subuniverse
    7. 34.7. Cauchy products of species of types
    8. 34.8. Cauchy products of species of types in a subuniverse
    9. 34.9. Cauchy series of species of types
    10. 34.10. Cauchy series of species of types in a subuniverse
    11. 34.11. Composition of Cauchy series of species of types
    12. 34.12. Composition of Cauchy series of species of types in subuniverses
    13. 34.13. Coproducts of species of types
    14. 34.14. Coproducts of species of types in subuniverses
    15. 34.15. Cycle index series of species
    16. 34.16. Derivatives of species
    17. 34.17. Dirichlet exponentials of a species of types
    18. 34.18. Dirichlet exponentials of species of types in a subuniverse
    19. 34.19. Dirichlet products of species of types
    20. 34.20. Dirichlet products of species of types in subuniverses
    21. 34.21. Dirichlet series of species of finite inhabited types
    22. 34.22. Dirichlet series of species of types
    23. 34.23. Dirichlet series of species of types in subuniverses
    24. 34.24. Equivalences of species of types
    25. 34.25. Equivalences of species of types in subuniverses
    26. 34.26. Exponential of Cauchy series of species of types
    27. 34.27. Exponential of Cauchy series of species of types in subuniverses
    28. 34.28. Hasse-Weil species
    29. 34.29. Morphisms of finite species
    30. 34.30. Morphisms of species of types
    31. 34.31. Pointing of species of types
    32. 34.32. The precategory of finite species
    33. 34.33. Products of Cauchy series of species of types
    34. 34.34. Products of Cauchy series of species of types in subuniverses
    35. 34.35. Products of Dirichlet series of species of finite inhabited types
    36. 34.36. Products of Dirichlet series of species of types
    37. 34.37. Products of Dirichlet series of species of types in subuniverses
    38. 34.38. Small Composition of species of finite inhabited types
    39. 34.39. Small Cauchy composition of species types in subuniverses
    40. 34.40. Species of finite inhabited types
    41. 34.41. Species of finite types
    42. 34.42. Species of inhabited types
    43. 34.43. Species of types
    44. 34.44. Species of types in subuniverses
    45. 34.45. The unit of Cauchy composition of types
    46. 34.46. The unit of Cauchy composition of species of types in subuniverses
    47. 34.47. Unlabeled structures of finite species
  37. 35. Structured types
    ❱
    1. 35.1. Cartesian products of types equipped with endomorphisms
    2. 35.2. Central H-spaces
    3. 35.3. Commuting squares of pointed homotopies
    4. 35.4. Commuting squares of pointed maps
    5. 35.5. Commuting triangles of pointed maps
    6. 35.6. Conjugation of pointed types
    7. 35.7. Constant pointed maps
    8. 35.8. Contractible pointed types
    9. 35.9. Cyclic types
    10. 35.10. Dependent products of H-spaces
    11. 35.11. Dependent products of pointed types
    12. 35.12. Dependent products of wild monoids
    13. 35.13. Dependent types equipped with automorphisms
    14. 35.14. Equivalences of H-spaces
    15. 35.15. Equivalences of pointed arrows
    16. 35.16. Equivalences of types equipped with automorphisms
    17. 35.17. Equivalences of types equipped with endomorphisms
    18. 35.18. Faithful pointed maps
    19. 35.19. Fibers of pointed maps
    20. 35.20. Finite multiplication in magmas
    21. 35.21. Function H-spaces
    22. 35.22. Function magmas
    23. 35.23. Function wild monoids
    24. 35.24. H-spaces
    25. 35.25. The initial pointed type equipped with an automorphism
    26. 35.26. The involutive type of H-space structures on a pointed type
    27. 35.27. Involutive types
    28. 35.28. Iterated cartesian products of types equipped with endomorphisms
    29. 35.29. Iterated cartesian products of pointed types
    30. 35.30. Magmas
    31. 35.31. Mere equivalences of types equipped with endomorphisms
    32. 35.32. Morphisms of H-spaces
    33. 35.33. Morphisms of magmas
    34. 35.34. Morphisms of pointed arrows
    35. 35.35. Morphisms of twisted pointed arrows
    36. 35.36. Morphisms of types equipped with automorphisms
    37. 35.37. Morphisms of types equipped with endomorphisms
    38. 35.38. Morphisms of wild monoids
    39. 35.39. Noncoherent H-spaces
    40. 35.40. Opposite pointed spans
    41. 35.41. Pointed 2-homotopies
    42. 35.42. Pointed cartesian product types
    43. 35.43. Pointed dependent functions
    44. 35.44. Pointed dependent pair types
    45. 35.45. Pointed equivalences
    46. 35.46. Pointed families of types
    47. 35.47. Pointed homotopies
    48. 35.48. Pointed isomorphisms
    49. 35.49. Pointed maps
    50. 35.50. Pointed retractions of pointed maps
    51. 35.51. Pointed sections of pointed maps
    52. 35.52. Pointed span diagrams
    53. 35.53. Pointed spans
    54. 35.54. Pointed types
    55. 35.55. Pointed types equipped with automorphisms
    56. 35.56. The pointed unit type
    57. 35.57. Universal property of contractible types with respect to pointed types and maps
    58. 35.58. Postcomposition of pointed maps
    59. 35.59. Precomposition of pointed maps
    60. 35.60. Sets equipped with automorphisms
    61. 35.61. Small pointed types
    62. 35.62. Symmetric elements of involutive types
    63. 35.63. Symmetric H-spaces
    64. 35.64. Transposition of pointed span diagrams
    65. 35.65. Types equipped with automorphisms
    66. 35.66. Types equipped with endomorphisms
    67. 35.67. Uniform pointed homotopies
    68. 35.68. The universal property of pointed equivalences
    69. 35.69. Unpointed maps between pointed types
    70. 35.70. Whiskering pointed homotopies with respect to concatenation
    71. 35.71. Whiskering of pointed homotopies with respect to composition of pointed maps
    72. 35.72. The wild category of pointed types
    73. 35.73. Wild groups
    74. 35.74. Wild loops
    75. 35.75. Wild monoids
    76. 35.76. Wild quasigroups
    77. 35.77. Wild semigroups
  38. 36. Synthetic category theory
    ❱
    1. 36.1. Cone diagrams of synthetic categories
    2. 36.2. Cospans of synthetic categories
    3. 36.3. Equivalences between synthetic categories
    4. 36.4. Invertible functors between synthetic categories
    5. 36.5. Pullbacks of synthetic categories
    6. 36.6. Retractions of functors between synthetic categories
    7. 36.7. Sections of functor between synthetic categories
    8. 36.8. Synthetic categories
  39. 37. Synthetic homotopy theory
    ❱
    1. 37.1. 0-acyclic maps
    2. 37.2. 0-acyclic types
    3. 37.3. 1-acyclic types
    4. 37.4. Acyclic maps
    5. 37.5. Acyclic types
    6. 37.6. The category of connected set bundles over the circle
    7. 37.7. Cavallo's trick
    8. 37.8. The circle
    9. 37.9. Cocartesian morphisms of arrows
    10. 37.10. Cocones under pointed span diagrams
    11. 37.11. Cocones under sequential diagrams
    12. 37.12. Cocones under spans
    13. 37.13. Codiagonals of maps
    14. 37.14. Coequalizers
    15. 37.15. Cofibers of maps
    16. 37.16. Cofibers of pointed maps
    17. 37.17. Coforks
    18. 37.18. Correspondence between cocones under sequential diagrams and certain coforks
    19. 37.19. Conjugation of loops
    20. 37.20. Connected set bundles over the circle
    21. 37.21. Connective prespectra
    22. 37.22. Connective spectra
    23. 37.23. Dependent cocones under sequential diagrams
    24. 37.24. Dependent cocones under spans
    25. 37.25. Dependent coforks
    26. 37.26. Dependent descent for the circle
    27. 37.27. The dependent pullback property of pushouts
    28. 37.28. Dependent pushout-products
    29. 37.29. Dependent sequential diagrams
    30. 37.30. Dependent suspension structures
    31. 37.31. The dependent universal property of coequalizers
    32. 37.32. The dependent universal property of pushouts
    33. 37.33. The dependent universal property of sequential colimits
    34. 37.34. Dependent universal property of suspensions
    35. 37.35. The descent property of the circle
    36. 37.36. Descent data for constant type families over the circle
    37. 37.37. Descent data for families of dependent pair types over the circle
    38. 37.38. Descent data for families of equivalence types over the circle
    39. 37.39. Descent data for families of function types over the circle
    40. 37.40. Subtypes of descent data for the circle
    41. 37.41. Descent data for type families of equivalence types over pushouts
    42. 37.42. Descent data for type families of function types over pushouts
    43. 37.43. Descent data for type families of identity types over pushouts
    44. 37.44. Descent data for pushouts
    45. 37.45. Descent data for sequential colimits
    46. 37.46. Descent property of pushouts
    47. 37.47. Descent property of sequential colimits
    48. 37.48. Double loop spaces
    49. 37.49. The Eckmann-Hilton argument
    50. 37.50. Equifibered sequential diagrams
    51. 37.51. Equivalences of cocones under sequential diagrams
    52. 37.52. Equivalences of coforks
    53. 37.53. Equivalances of dependent sequential diagrams
    54. 37.54. Equivalences of descent data for pushouts
    55. 37.55. Equivalences of sequential diagrams
    56. 37.56. Families with descent data for pushouts
    57. 37.57. Families with descent data for sequential colimits
    58. 37.58. The flattening lemma for coequalizers
    59. 37.59. The flattening lemma for pushouts
    60. 37.60. The flattening lemma for sequential colimits
    61. 37.61. Free loops
    62. 37.62. Functoriality of the loop space operation
    63. 37.63. Functoriality of sequential colimits
    64. 37.64. Functoriality of suspensions
    65. 37.65. Groups of loops in 1-types
    66. 37.66. Hatcher's acyclic type
    67. 37.67. Homotopy groups
    68. 37.68. Identity systems of descent data for pushouts
    69. 37.69. The induction principle of pushouts
    70. 37.70. The infinite dimensional complex projective space
    71. 37.71. Infinite cyclic types
    72. 37.72. The infinite dimensional real projective space
    73. 37.73. The interval
    74. 37.74. Iterated loop spaces
    75. 37.75. Iterated suspensions of pointed types
    76. 37.76. Join powers of types
    77. 37.77. Joins of maps
    78. 37.78. Joins of types
    79. 37.79. Left half-smash products
    80. 37.80. The loop homotopy on the circle
    81. 37.81. Loop spaces
    82. 37.82. Maps of prespectra
    83. 37.83. Mere spheres
    84. 37.84. Morphisms of cocones under morphisms of sequential diagrams
    85. 37.85. Morphisms of coforks
    86. 37.86. Morphisms of dependent sequential diagrams
    87. 37.87. Morphisms of descent data of the circle
    88. 37.88. Morphisms of descent data for pushouts
    89. 37.89. Morphisms of sequential diagrams
    90. 37.90. The multiplication operation on the circle
    91. 37.91. Null cocones under pointed span diagrams
    92. 37.92. The plus-principle
    93. 37.93. Powers of loops
    94. 37.94. Premanifolds
    95. 37.95. Prespectra
    96. 37.96. The pullback property of pushouts
    97. 37.97. Pushout-products
    98. 37.98. Pushouts
    99. 37.99. Pushouts of pointed types
    100. 37.100. The recursion principle of pushouts
    101. 37.101. Retracts of sequential diagrams
    102. 37.102. Rewriting rules for pushouts
    103. 37.103. Sections of families over the circle
    104. 37.104. Sections of descent data for pushouts
    105. 37.105. Sequential colimits
    106. 37.106. Sequential diagrams
    107. 37.107. Sequentially compact types
    108. 37.108. Shifts of sequential diagrams
    109. 37.109. Smash products of pointed types
    110. 37.110. Spectra
    111. 37.111. The sphere prespectrum
    112. 37.112. Spheres
    113. 37.113. Suspension prespectra
    114. 37.114. Suspension Structures
    115. 37.115. Suspensions of pointed types
    116. 37.116. Suspensions of propositions
    117. 37.117. Suspensions of types
    118. 37.118. Tangent spheres
    119. 37.119. Total cocones of type families over cocones under sequential diagrams
    120. 37.120. Total sequential diagrams of dependent sequential diagrams
    121. 37.121. Triple loop spaces
    122. 37.122. k-acyclic maps
    123. 37.123. k-acyclic types
    124. 37.124. The universal cover of the circle
    125. 37.125. The universal property of the circle
    126. 37.126. The universal property of coequalizers
    127. 37.127. The universal property of pushouts
    128. 37.128. The universal property of sequential colimits
    129. 37.129. Universal property of suspensions
    130. 37.130. Universal Property of suspensions of pointed types
    131. 37.131. Wedges of pointed types
    132. 37.132. Zigzags between sequential diagrams
  40. 38. Trees
    ❱
    1. 38.1. Algebras for polynomial endofunctors
    2. 38.2. Bases of directed trees
    3. 38.3. Bases of enriched directed trees
    4. 38.4. Binary W-types
    5. 38.5. Bounded multisets
    6. 38.6. The coalgebra of directed trees
    7. 38.7. The coalgebra of enriched directed trees
    8. 38.8. Coalgebras of polynomial endofunctors
    9. 38.9. The combinator of directed trees
    10. 38.10. Combinators of enriched directed trees
    11. 38.11. Directed trees
    12. 38.12. The elementhood relation on coalgebras of polynomial endofunctors
    13. 38.13. The elementhood relation on W-types
    14. 38.14. Empty multisets
    15. 38.15. Enriched directed trees
    16. 38.16. Equivalences of directed trees
    17. 38.17. Equivalences of enriched directed trees
    18. 38.18. Extensional W-types
    19. 38.19. Fibers of directed trees
    20. 38.20. Fibers of enriched directed trees
    21. 38.21. Full binary trees
    22. 38.22. Functoriality of the combinator of directed trees
    23. 38.23. Functoriality of the fiber operation on directed trees
    24. 38.24. Functoriality of W-types
    25. 38.25. Hereditary W-types
    26. 38.26. Indexed W-types
    27. 38.27. Induction principles on W-types
    28. 38.28. Inequality on W-types
    29. 38.29. Lower types of elements in W-types
    30. 38.30. Morphisms of algebras of polynomial endofunctors
    31. 38.31. Morphisms of coalgebras of polynomial endofunctors
    32. 38.32. Morphisms of directed trees
    33. 38.33. Morphisms of enriched directed trees
    34. 38.34. Multiset-indexed dependent products of types
    35. 38.35. Multisets
    36. 38.36. Planar binary trees
    37. 38.37. Plane trees
    38. 38.38. Polynomial endofunctors
    39. 38.39. Raising universe levels of directed trees
    40. 38.40. Ranks of elements in W-types
    41. 38.41. Rooted morphisms of directed trees
    42. 38.42. Rooted morphisms of enriched directed trees
    43. 38.43. Rooted quasitrees
    44. 38.44. Rooted undirected trees
    45. 38.45. Small multisets
    46. 38.46. Submultisets
    47. 38.47. Transitive multisets
    48. 38.48. The underlying trees of elements of coalgebras of polynomial endofunctors
    49. 38.49. The underlying trees of elements of W-types
    50. 38.50. Undirected trees
    51. 38.51. The universal multiset
    52. 38.52. The universal tree
    53. 38.53. The W-type of natural numbers
    54. 38.54. The W-type of the type of propositions
    55. 38.55. W-types
  41. 39. Type theories
    ❱
    1. 39.1. Comprehension of fibered type theories
    2. 39.2. Dependent type theories
    3. 39.3. Fibered dependent type theories
    4. 39.4. Π-types in precategories with attributes
    5. 39.5. Π-types in precategories with families
    6. 39.6. Precategories with attributes
    7. 39.7. Precategories with families
    8. 39.8. Sections of dependent type theories
    9. 39.9. Simple type theories
    10. 39.10. Unityped type theories
  42. 40. Univalent combinatorics
    ❱
    1. 40.1. 2-element decidable subtypes
    2. 40.2. 2-element subtypes
    3. 40.3. 2-element types
    4. 40.4. The binomial types
    5. 40.5. Bracelets
    6. 40.6. Cartesian products of finite types
    7. 40.7. The classical definition of the standard finite types
    8. 40.8. Complements of isolated elements of finite types
    9. 40.9. Coproducts of finite types
    10. 40.10. Counting in type theory
    11. 40.11. Counting the elements of decidable subtypes
    12. 40.12. Counting the elements of dependent pair types
    13. 40.13. Counting the elements of the fiber of a map
    14. 40.14. Counting the elements in Maybe
    15. 40.15. Cubes
    16. 40.16. Cycle partitions of finite types
    17. 40.17. Cycle prime decompositions of natural numbers
    18. 40.18. Cyclic finite types
    19. 40.19. De Morgan's law for finite families of propositions
    20. 40.20. Decidable dependent function types
    21. 40.21. Decidability of dependent pair types
    22. 40.22. Decidable equivalence relations on finite types
    23. 40.23. Decidable propositions
    24. 40.24. Decidable subtypes of finite types
    25. 40.25. Dedekind finite sets
    26. 40.26. Counting the elements of dependent function types
    27. 40.27. Dependent pair types of finite types
    28. 40.28. Finite discrete Σ-decompositions
    29. 40.29. Distributivity of set truncation over finite products
    30. 40.30. Double counting
    31. 40.31. Embeddings
    32. 40.32. Embeddings between standard finite types
    33. 40.33. Equality in finite types
    34. 40.34. Equality in the standard finite types
    35. 40.35. Equivalences between finite types
    36. 40.36. Equivalences of cubes
    37. 40.37. Equivalences between standard finite types
    38. 40.38. Ferrers diagrams (unlabeled partitions)
    39. 40.39. Fibers of maps between finite types
    40. 40.40. Finite choice
    41. 40.41. Finite presentations of types
    42. 40.42. Finite types
    43. 40.43. Finiteness of the type of connected components
    44. 40.44. Finitely presented types
    45. 40.45. Finite function types
    46. 40.46. The image of a map
    47. 40.47. Inequality on types equipped with a counting
    48. 40.48. Inhabited finite types
    49. 40.49. Injective maps between finite types
    50. 40.50. An involution on the standard finite types
    51. 40.51. Isotopies of Latin squares
    52. 40.52. Kuratowski finite sets
    53. 40.53. Latin squares
    54. 40.54. Locally finite types
    55. 40.55. The groupoid of main classes of Latin hypercubes
    56. 40.56. The groupoid of main classes of Latin squares
    57. 40.57. The maybe monad on finite types
    58. 40.58. Necklaces
    59. 40.59. Orientations of the complete undirected graph
    60. 40.60. Orientations of cubes
    61. 40.61. Partitions of finite types
    62. 40.62. Petri-nets
    63. 40.63. π-finite types
    64. 40.64. The pigeonhole principle
    65. 40.65. Finitely π-presented types
    66. 40.66. Quotients of finite types
    67. 40.67. Ramsey theory
    68. 40.68. Repetitions of values
    69. 40.69. Repetitions of values in sequences
    70. 40.70. Retracts of finite types
    71. 40.71. Riffle shuffles
    72. 40.72. Sequences of elements in finite types
    73. 40.73. Set quotients of index 2
    74. 40.74. Finite Σ-decompositions of finite types
    75. 40.75. Skipping elements in standard finite types
    76. 40.76. Small types
    77. 40.77. Standard finite pruned trees
    78. 40.78. Standard finite trees
    79. 40.79. The standard finite types
    80. 40.80. Steiner systems
    81. 40.81. Steiner triple systems
    82. 40.82. Combinatorial identities of sums of natural numbers
    83. 40.83. Surjective maps between finite types
    84. 40.84. Symmetric difference of finite subtypes
    85. 40.85. Finite trivial Σ-decompositions
    86. 40.86. Type duality of finite types
    87. 40.87. Unbounded π-finite types
    88. 40.88. Unions of finite subtypes
    89. 40.89. The universal property of the standard finite types
    90. 40.90. Unlabeled partitions
    91. 40.91. Unlabeled rooted trees
    92. 40.92. Unlabeled trees
    93. 40.93. Untruncated π-finite types
  43. 41. Universal algebra
    ❱
    1. 41.1. Abstract equations over signatures
    2. 41.2. Algebraic theories
    3. 41.3. Algebraic theory of groups
    4. 41.4. Algebras
    5. 41.5. Congruences
    6. 41.6. Homomorphisms of algebras
    7. 41.7. Kernels of homomorphisms of algebras
    8. 41.8. Models of signatures
    9. 41.9. Quotient algebras
    10. 41.10. Signatures
    11. 41.11. Terms over signatures
  44. 42. Wild category theory
    ❱
    1. 42.1. Coinductive isomorphisms in noncoherent large ω-precategories
    2. 42.2. Coinductive isomorphisms in noncoherent ω-precategories
    3. 42.3. Colax functors between large noncoherent ω-precategories
    4. 42.4. Colax functors between noncoherent ω-precategories
    5. 42.5. Maps between noncoherent large ω-precategories
    6. 42.6. Maps between noncoherent ω-precategories
    7. 42.7. Noncoherent large ω-precategories
    8. 42.8. Noncoherent ω-precategories

agda-unimath

Nonnegative real numbers

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2025-03-26.
Last modified on 2025-03-26.

{-# OPTIONS --lossy-unification #-}

module real-numbers.nonnegative-real-numbers where
Imports
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.rational-real-numbers

Idea

A real number x is nonnegative¶ if 0 ≤ x.

Definitions

is-nonnegative-ℝ : {l : Level} → ℝ l → UU l
is-nonnegative-ℝ = leq-ℝ zero-ℝ

is-nonnegative-prop-ℝ : {l : Level} → ℝ l → Prop l
is-nonnegative-prop-ℝ = leq-ℝ-Prop zero-ℝ

nonnegative-ℝ : (l : Level) → UU (lsuc l)
nonnegative-ℝ l = type-subtype (is-nonnegative-prop-ℝ {l})

Recent changes

  • 2025-03-26. Louis Wasserman and Fredrik Bakke. Absolute value of real numbers (#1385).