Morphisms of dependent directed graphs
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
module graph-theory.morphisms-dependent-directed-graphs where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.universe-levels open import graph-theory.dependent-directed-graphs open import graph-theory.directed-graphs
Idea
Consider two
dependent directed graphs H
and
K
over a directed graph G
. A
morphism of dependent directed graphs¶
from H
to K
consists of a family of maps
f₀ : {x : G₀} → H₀ x → K₀ x
of vertices, and a family of maps
f₁ : {x y : G₀} (a : G₁ x y) {y : H₀ x} {y' : H₀ x'} → H₁ a y y' → K₁ a (f₀ y) (f₀ y')
of edges.
Definitions
Morphisms of dependent directed graphs
module _ {l1 l2 l3 l4 l5 l6 : Level} {G : Directed-Graph l1 l2} (H : Dependent-Directed-Graph l3 l4 G) (K : Dependent-Directed-Graph l5 l6 G) where hom-Dependent-Directed-Graph : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) hom-Dependent-Directed-Graph = Σ ( (x : vertex-Directed-Graph G) → vertex-Dependent-Directed-Graph H x → vertex-Dependent-Directed-Graph K x) ( λ f → (x x' : vertex-Directed-Graph G) → (a : edge-Directed-Graph G x x') → (y : vertex-Dependent-Directed-Graph H x) (y' : vertex-Dependent-Directed-Graph H x') → edge-Dependent-Directed-Graph H a y y' → edge-Dependent-Directed-Graph K a (f x y) (f x' y')) vertex-hom-Dependent-Directed-Graph : hom-Dependent-Directed-Graph → {x : vertex-Directed-Graph G} → vertex-Dependent-Directed-Graph H x → vertex-Dependent-Directed-Graph K x vertex-hom-Dependent-Directed-Graph f = pr1 f _ edge-hom-Dependent-Directed-Graph : (f : hom-Dependent-Directed-Graph) → {x x' : vertex-Directed-Graph G} (a : edge-Directed-Graph G x x') {y : vertex-Dependent-Directed-Graph H x} {y' : vertex-Dependent-Directed-Graph H x'} → edge-Dependent-Directed-Graph H a y y' → edge-Dependent-Directed-Graph K a ( vertex-hom-Dependent-Directed-Graph f y) ( vertex-hom-Dependent-Directed-Graph f y') edge-hom-Dependent-Directed-Graph f a = pr2 f _ _ a _ _
The identity morphism of a dependent directed graph
module _ {l1 l2 l3 l4 : Level} {G : Directed-Graph l1 l2} (H : Dependent-Directed-Graph l3 l4 G) where vertex-id-hom-Dependent-Directed-Graph : {x : vertex-Directed-Graph G} → vertex-Dependent-Directed-Graph H x → vertex-Dependent-Directed-Graph H x vertex-id-hom-Dependent-Directed-Graph = id edge-id-hom-Dependent-Directed-Graph : {x x' : vertex-Directed-Graph G} (a : edge-Directed-Graph G x x') (y : vertex-Dependent-Directed-Graph H x) (y' : vertex-Dependent-Directed-Graph H x') → edge-Dependent-Directed-Graph H a y y' → edge-Dependent-Directed-Graph H a ( vertex-id-hom-Dependent-Directed-Graph y) ( vertex-id-hom-Dependent-Directed-Graph y') edge-id-hom-Dependent-Directed-Graph a y y' = id id-hom-Dependent-Directed-Graph : hom-Dependent-Directed-Graph H H pr1 id-hom-Dependent-Directed-Graph _ = vertex-id-hom-Dependent-Directed-Graph pr2 id-hom-Dependent-Directed-Graph _ _ = edge-id-hom-Dependent-Directed-Graph
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).