Subterminal types
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-01-27.
Last modified on 2024-04-11.
module foundation.subterminal-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.unit-type open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.propositions
Idea
A type is said to be subterminal¶ if it embeds into the unit type. A type is subterminal if and only if it is a proposition.
Definition
module _ {l : Level} (A : UU l) where is-subterminal : UU l is-subterminal = is-emb (terminal-map A)
Properties
A type is subterminal if and only if it is a proposition
module _ {l : Level} {A : UU l} where abstract is-subterminal-is-proof-irrelevant : is-proof-irrelevant A → is-subterminal A is-subterminal-is-proof-irrelevant H = is-emb-is-emb ( λ x → is-emb-is-equiv (is-equiv-is-contr _ (H x) is-contr-unit)) abstract is-subterminal-all-elements-equal : all-elements-equal A → is-subterminal A is-subterminal-all-elements-equal = is-subterminal-is-proof-irrelevant ∘ is-proof-irrelevant-all-elements-equal abstract is-subterminal-is-prop : is-prop A → is-subterminal A is-subterminal-is-prop = is-subterminal-all-elements-equal ∘ eq-is-prop' abstract is-prop-is-subterminal : is-subterminal A → is-prop A is-prop-is-subterminal H x y = is-contr-is-equiv ( star = star) ( ap (terminal-map A)) ( H x y) ( is-prop-unit star star) abstract eq-is-subterminal : is-subterminal A → all-elements-equal A eq-is-subterminal = eq-is-prop' ∘ is-prop-is-subterminal abstract is-proof-irrelevant-is-subterminal : is-subterminal A → is-proof-irrelevant A is-proof-irrelevant-is-subterminal H = is-proof-irrelevant-all-elements-equal (eq-is-subterminal H)
Table of files about propositional logic
The following table gives an overview of basic constructions in propositional logic and related considerations.
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-01-09. Fredrik Bakke. Make type argument explicit for
terminal-map
(#993). - 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).