Scalar multiplication of differentiable functions on proper closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
{-# OPTIONS --lossy-unification #-} module analysis.scalar-multiplication-differentiable-real-maps-on-proper-closed-intervals-real-numbers where
Imports
open import analysis.differentiable-real-maps-on-proper-closed-intervals-real-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import group-theory.abelian-groups open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
Given a
differentiable
function f from a
proper closed interval
in the real numbers to the real numbers
with derivative f', and a real number c, the map x ↦ c * f x is
differentiable with derivative x ↦ c * f' x.
Proof
module _ {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (f' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (is-derivative-f-f' : is-derivative-real-map-proper-closed-interval-ℝ [a,b] f f') (c : ℝ l3) where abstract is-derivative-scalar-mul-real-map-proper-closed-interval-ℝ : is-derivative-real-map-proper-closed-interval-ℝ ( [a,b]) ( λ x → c *ℝ f x) ( λ x → c *ℝ f' x) is-derivative-scalar-mul-real-map-proper-closed-interval-ℝ = let open do-syntax-trunc-Prop ( is-derivative-prop-real-map-proper-closed-interval-ℝ ( [a,b]) ( λ x → c *ℝ f x) ( λ x → c *ℝ f' x)) open inequality-reasoning-Large-Poset ℝ-Large-Poset in do (μ , is-mod-μ) ← is-derivative-f-f' (q , |c|<q) ← exists-greater-positive-rational-ℝ (abs-ℝ c) is-derivative-modulus-of-real-map-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( μ (ε *ℚ⁺ inv-ℚ⁺ q) , λ x y N⟨ε/q⟩xy → chain-of-inequalities dist-ℝ (c *ℝ f y -ℝ c *ℝ f x) (c *ℝ f' x *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ (c *ℝ (f y -ℝ f x)) (c *ℝ (f' x *ℝ (pr1 y -ℝ pr1 x))) by leq-eq-ℝ ( ap-dist-ℝ ( inv (left-distributive-mul-diff-ℝ _ _ _)) ( associative-mul-ℝ _ _ _)) ≤ abs-ℝ c *ℝ dist-ℝ (f y -ℝ f x) (f' x *ℝ (pr1 y -ℝ pr1 x)) by leq-eq-ℝ (inv (left-distributive-abs-mul-dist-ℝ _ _ _)) ≤ ( real-ℚ⁺ q) *ℝ ( real-ℚ⁺ (ε *ℚ⁺ inv-ℚ⁺ q) *ℝ dist-ℝ (pr1 x) (pr1 y)) by preserves-leq-mul-ℝ⁰⁺ ( nonnegative-abs-ℝ c) ( nonnegative-real-ℚ⁺ q) ( nonnegative-dist-ℝ _ _) ( nonnegative-real-ℚ⁺ (ε *ℚ⁺ inv-ℚ⁺ q) *ℝ⁰⁺ nonnegative-dist-ℝ _ _) ( leq-le-ℝ |c|<q) ( is-mod-μ ( ε *ℚ⁺ inv-ℚ⁺ q) ( x) ( y) ( N⟨ε/q⟩xy)) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ ( ( inv (associative-mul-ℝ _ _ _)) ∙ ( ap-mul-ℝ ( ( mul-real-ℚ _ _) ∙ ( ap ( real-ℚ⁺) ( is-identity-right-conjugation-Ab ( abelian-group-mul-ℚ⁺) ( q) ( ε)))) ( refl))))) scalar-mul-differentiable-real-map-proper-closed-interval-ℝ : {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) → ℝ l2 → differentiable-real-map-proper-closed-interval-ℝ l3 [a,b] → differentiable-real-map-proper-closed-interval-ℝ (l2 ⊔ l3) [a,b] scalar-mul-differentiable-real-map-proper-closed-interval-ℝ [a,b] c (f , f' , Df=f') = ( ( λ x → c *ℝ f x) , ( λ x → c *ℝ f' x) , is-derivative-scalar-mul-real-map-proper-closed-interval-ℝ ( [a,b]) ( f) ( f') ( Df=f') ( c))
Recent changes
- 2026-01-30. Louis Wasserman. Refactor differentiable functions (#1774).