Inflationary maps on a preorder
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.inflationary-maps-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.order-preserving-maps-preorders open import order-theory.preorders
Idea
A map on a preorder is said to be an inflationary map¶ if the inequality
holds for any element . If is also order preserving we say that is an inflationary morphism¶.
Definitions
The predicate of being an inflationary map
module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : type-Preorder P → type-Preorder P) where is-inflationary-prop-map-Preorder : Prop (l1 ⊔ l2) is-inflationary-prop-map-Preorder = Π-Prop (type-Preorder P) (λ x → leq-prop-Preorder P x (f x)) is-inflationary-map-Preorder : UU (l1 ⊔ l2) is-inflationary-map-Preorder = type-Prop is-inflationary-prop-map-Preorder is-prop-is-inflationary-map-Preorder : is-prop is-inflationary-map-Preorder is-prop-is-inflationary-map-Preorder = is-prop-type-Prop is-inflationary-prop-map-Preorder
The type of inflationary maps on a preorder
module _ {l1 l2 : Level} (P : Preorder l1 l2) where inflationary-map-Preorder : UU (l1 ⊔ l2) inflationary-map-Preorder = type-subtype (is-inflationary-prop-map-Preorder P) module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : inflationary-map-Preorder P) where map-inflationary-map-Preorder : type-Preorder P → type-Preorder P map-inflationary-map-Preorder = pr1 f is-inflationary-inflationary-map-Preorder : is-inflationary-map-Preorder P map-inflationary-map-Preorder is-inflationary-inflationary-map-Preorder = pr2 f
The predicate on order preserving maps of being inflationary
module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : hom-Preorder P P) where is-inflationary-prop-hom-Preorder : Prop (l1 ⊔ l2) is-inflationary-prop-hom-Preorder = is-inflationary-prop-map-Preorder P (map-hom-Preorder P P f) is-inflationary-hom-Preorder : UU (l1 ⊔ l2) is-inflationary-hom-Preorder = is-inflationary-map-Preorder P (map-hom-Preorder P P f) is-prop-is-inflationary-hom-Preorder : is-prop is-inflationary-hom-Preorder is-prop-is-inflationary-hom-Preorder = is-prop-is-inflationary-map-Preorder P (map-hom-Preorder P P f)
The type of inflationary morphisms on a preorder
module _ {l1 l2 : Level} (P : Preorder l1 l2) where inflationary-hom-Preorder : UU (l1 ⊔ l2) inflationary-hom-Preorder = type-subtype (is-inflationary-prop-hom-Preorder P) module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : inflationary-hom-Preorder P) where hom-inflationary-hom-Preorder : hom-Preorder P P hom-inflationary-hom-Preorder = pr1 f map-inflationary-hom-Preorder : type-Preorder P → type-Preorder P map-inflationary-hom-Preorder = map-hom-Preorder P P hom-inflationary-hom-Preorder preserves-order-inflationary-hom-Preorder : preserves-order-Preorder P P map-inflationary-hom-Preorder preserves-order-inflationary-hom-Preorder = preserves-order-hom-Preorder P P hom-inflationary-hom-Preorder is-inflationary-inflationary-hom-Preorder : is-inflationary-map-Preorder P map-inflationary-hom-Preorder is-inflationary-inflationary-hom-Preorder = pr2 f inflationary-map-inflationary-hom-Preorder : inflationary-map-Preorder P pr1 inflationary-map-inflationary-hom-Preorder = map-inflationary-hom-Preorder pr2 inflationary-map-inflationary-hom-Preorder = is-inflationary-inflationary-hom-Preorder
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).