Inflationary maps on a preorder

Content created by Egbert Rijke.

Created on 2025-02-09.
Last modified on 2025-02-09.

module order-theory.inflationary-maps-preorders where
Imports
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.order-preserving-maps-preorders
open import order-theory.preorders

Idea

A map on a preorder is said to be an inflationary map if the inequality

holds for any element . If is also order preserving we say that is an inflationary morphism.

Definitions

The predicate of being an inflationary map

module _
  {l1 l2 : Level} (P : Preorder l1 l2) (f : type-Preorder P  type-Preorder P)
  where

  is-inflationary-prop-map-Preorder :
    Prop (l1  l2)
  is-inflationary-prop-map-Preorder =
    Π-Prop (type-Preorder P)  x  leq-prop-Preorder P x (f x))

  is-inflationary-map-Preorder :
    UU (l1  l2)
  is-inflationary-map-Preorder =
    type-Prop is-inflationary-prop-map-Preorder

  is-prop-is-inflationary-map-Preorder :
    is-prop is-inflationary-map-Preorder
  is-prop-is-inflationary-map-Preorder =
    is-prop-type-Prop is-inflationary-prop-map-Preorder

The type of inflationary maps on a preorder

module _
  {l1 l2 : Level} (P : Preorder l1 l2)
  where

  inflationary-map-Preorder :
    UU (l1  l2)
  inflationary-map-Preorder =
    type-subtype (is-inflationary-prop-map-Preorder P)

module _
  {l1 l2 : Level} (P : Preorder l1 l2) (f : inflationary-map-Preorder P)
  where

  map-inflationary-map-Preorder :
    type-Preorder P  type-Preorder P
  map-inflationary-map-Preorder =
    pr1 f

  is-inflationary-inflationary-map-Preorder :
    is-inflationary-map-Preorder P map-inflationary-map-Preorder
  is-inflationary-inflationary-map-Preorder =
    pr2 f

The predicate on order preserving maps of being inflationary

module _
  {l1 l2 : Level} (P : Preorder l1 l2) (f : hom-Preorder P P)
  where

  is-inflationary-prop-hom-Preorder : Prop (l1  l2)
  is-inflationary-prop-hom-Preorder =
    is-inflationary-prop-map-Preorder P (map-hom-Preorder P P f)

  is-inflationary-hom-Preorder : UU (l1  l2)
  is-inflationary-hom-Preorder =
    is-inflationary-map-Preorder P (map-hom-Preorder P P f)

  is-prop-is-inflationary-hom-Preorder :
    is-prop is-inflationary-hom-Preorder
  is-prop-is-inflationary-hom-Preorder =
    is-prop-is-inflationary-map-Preorder P (map-hom-Preorder P P f)

The type of inflationary morphisms on a preorder

module _
  {l1 l2 : Level} (P : Preorder l1 l2)
  where

  inflationary-hom-Preorder : UU (l1  l2)
  inflationary-hom-Preorder =
    type-subtype (is-inflationary-prop-hom-Preorder P)

module _
  {l1 l2 : Level} (P : Preorder l1 l2) (f : inflationary-hom-Preorder P)
  where

  hom-inflationary-hom-Preorder :
    hom-Preorder P P
  hom-inflationary-hom-Preorder =
    pr1 f

  map-inflationary-hom-Preorder :
    type-Preorder P  type-Preorder P
  map-inflationary-hom-Preorder =
    map-hom-Preorder P P hom-inflationary-hom-Preorder

  preserves-order-inflationary-hom-Preorder :
    preserves-order-Preorder P P map-inflationary-hom-Preorder
  preserves-order-inflationary-hom-Preorder =
    preserves-order-hom-Preorder P P hom-inflationary-hom-Preorder

  is-inflationary-inflationary-hom-Preorder :
    is-inflationary-map-Preorder P map-inflationary-hom-Preorder
  is-inflationary-inflationary-hom-Preorder =
    pr2 f

  inflationary-map-inflationary-hom-Preorder :
    inflationary-map-Preorder P
  pr1 inflationary-map-inflationary-hom-Preorder =
    map-inflationary-hom-Preorder
  pr2 inflationary-map-inflationary-hom-Preorder =
    is-inflationary-inflationary-hom-Preorder

Recent changes