Cartesian products of species of types
Content created by Egbert Rijke, Fredrik Bakke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2024-02-06.
module species.cartesian-products-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.equivalences open import foundation.functoriality-dependent-function-types open import foundation.universal-property-dependent-pair-types open import foundation.universe-levels open import species.cartesian-exponents-species-of-types open import species.morphisms-species-of-types open import species.species-of-types
Idea
The cartesian product of two species of types F
and G
is their pointwise
cartesian product.
Definition
product-species-types : {l1 l2 l3 : Level} (F : species-types l1 l2) (G : species-types l1 l3) → species-types l1 (l2 ⊔ l3) product-species-types F G X = (F X) × (G X)
Properties
The adjunction between cartesian products and exponents of species of types
equiv-universal-property-exponents-species-types : {l1 l2 l3 l4 : Level} (F : species-types l1 l2) (G : species-types l1 l3) (H : species-types l1 l4) → hom-species-types (product-species-types F G) H ≃ hom-species-types F (function-species-types G H) equiv-universal-property-exponents-species-types F G H = equiv-Π-equiv-family (λ X → equiv-ev-pair)
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-04-27. Egbert Rijke. Cleaning up some stuff in species (#575).
- 2023-03-21. Victor Blanchi. Associativity of species composition (#478).