Cartesian products of species of types

Content created by Egbert Rijke, Fredrik Bakke and Victor Blanchi.

Created on 2023-03-21.
Last modified on 2024-02-06.

module species.cartesian-products-species-of-types where
open import foundation.cartesian-product-types
open import foundation.equivalences
open import foundation.functoriality-dependent-function-types
open import foundation.universal-property-dependent-pair-types
open import foundation.universe-levels

open import species.cartesian-exponents-species-of-types
open import species.morphisms-species-of-types
open import species.species-of-types


The cartesian product of two species of types F and G is their pointwise cartesian product.


product-species-types :
  {l1 l2 l3 : Level} (F : species-types l1 l2) (G : species-types l1 l3) 
  species-types l1 (l2  l3)
product-species-types F G X = (F X) × (G X)


The adjunction between cartesian products and exponents of species of types

equiv-universal-property-exponents-species-types :
  {l1 l2 l3 l4 : Level}
  (F : species-types l1 l2) (G : species-types l1 l3)
  (H : species-types l1 l4) 
  hom-species-types (product-species-types F G) H 
  hom-species-types F (function-species-types G H)
equiv-universal-property-exponents-species-types F G H =
  equiv-Π-equiv-family  X  equiv-ev-pair)

Recent changes