Transposition of span diagrams
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-01-28.
module foundation.transposition-span-diagrams where
Imports
open import foundation.dependent-pair-types open import foundation.opposite-spans open import foundation.span-diagrams open import foundation.spans open import foundation.universe-levels
Idea
The trasposition¶ of a span diagram
f g
A <----- S -----> B
is the span diagram
g f
B <----- S -----> A.
In other words, the transposition of a span diagram (A , B , s)
is the span
diagram (B , A , opposite-span s)
where opposite-span s
is the
opposite of the span s
from A
to B
.
Definitions
Transposition of span diagrams
module _ {l1 l2 l3 : Level} (𝒮 : span-diagram l1 l2 l3) where transposition-span-diagram : span-diagram l2 l1 l3 pr1 transposition-span-diagram = codomain-span-diagram 𝒮 pr1 (pr2 transposition-span-diagram) = domain-span-diagram 𝒮 pr2 (pr2 transposition-span-diagram) = opposite-span (span-span-diagram 𝒮)
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).