Algebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-13.
Last modified on 2026-02-13.
module commutative-algebra.algebras-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.bilinear-maps-left-modules-commutative-rings open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-commutative-rings
Idea
An
algebra¶
over a commutative ring R is a
left module M over R
equipped with a
bilinear map,
called its product, * : M → M → M.
Definition
algebra-Commutative-Ring : {l1 : Level} (l2 : Level) → Commutative-Ring l1 → UU (l1 ⊔ lsuc l2) algebra-Commutative-Ring l2 R = Σ ( left-module-Commutative-Ring l2 R) ( λ M → bilinear-map-left-module-Commutative-Ring R M M M)
Properties
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where left-module-algebra-Commutative-Ring : left-module-Commutative-Ring l2 R left-module-algebra-Commutative-Ring = pr1 A set-algebra-Commutative-Ring : Set l2 set-algebra-Commutative-Ring = set-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring type-algebra-Commutative-Ring : UU l2 type-algebra-Commutative-Ring = type-Set set-algebra-Commutative-Ring ab-add-algebra-Commutative-Ring : Ab l2 ab-add-algebra-Commutative-Ring = ab-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring add-algebra-Commutative-Ring : type-algebra-Commutative-Ring → type-algebra-Commutative-Ring → type-algebra-Commutative-Ring add-algebra-Commutative-Ring = add-Ab ab-add-algebra-Commutative-Ring zero-algebra-Commutative-Ring : type-algebra-Commutative-Ring zero-algebra-Commutative-Ring = zero-Ab ab-add-algebra-Commutative-Ring neg-algebra-Commutative-Ring : type-algebra-Commutative-Ring → type-algebra-Commutative-Ring neg-algebra-Commutative-Ring = neg-Ab ab-add-algebra-Commutative-Ring scalar-mul-algebra-Commutative-Ring : type-Commutative-Ring R → type-algebra-Commutative-Ring → type-algebra-Commutative-Ring scalar-mul-algebra-Commutative-Ring = mul-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring bilinear-mul-algebra-Commutative-Ring : bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring) ( left-module-algebra-Commutative-Ring) ( left-module-algebra-Commutative-Ring) bilinear-mul-algebra-Commutative-Ring = pr2 A mul-algebra-Commutative-Ring : type-algebra-Commutative-Ring → type-algebra-Commutative-Ring → type-algebra-Commutative-Ring mul-algebra-Commutative-Ring = map-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring) ( left-module-algebra-Commutative-Ring) ( left-module-algebra-Commutative-Ring) ( bilinear-mul-algebra-Commutative-Ring) left-unit-law-scalar-mul-algebra-Commutative-Ring : (x : type-algebra-Commutative-Ring) → scalar-mul-algebra-Commutative-Ring (one-Commutative-Ring R) x = x left-unit-law-scalar-mul-algebra-Commutative-Ring = left-unit-law-mul-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring) right-distributive-scalar-mul-add-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) (x : type-algebra-Commutative-Ring) → scalar-mul-algebra-Commutative-Ring (add-Commutative-Ring R r s) x = add-algebra-Commutative-Ring ( scalar-mul-algebra-Commutative-Ring r x) ( scalar-mul-algebra-Commutative-Ring s x) right-distributive-scalar-mul-add-algebra-Commutative-Ring = right-distributive-mul-add-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring)
(rs)y = r(sy)
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where abstract associative-scalar-mul-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) → (x : type-algebra-Commutative-Ring R A) → scalar-mul-algebra-Commutative-Ring R A ( mul-Commutative-Ring R r s) ( x) = scalar-mul-algebra-Commutative-Ring R A ( r) ( scalar-mul-algebra-Commutative-Ring R A s x) associative-scalar-mul-algebra-Commutative-Ring = associative-mul-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A)
r(xy) = x(ry)
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where abstract left-swap-scalar-mul-mul-algebra-Commutative-Ring : (r : type-Commutative-Ring R) (x y : type-algebra-Commutative-Ring R A) → scalar-mul-algebra-Commutative-Ring R A ( r) ( mul-algebra-Commutative-Ring R A x y) = mul-algebra-Commutative-Ring R A ( x) ( scalar-mul-algebra-Commutative-Ring R A r y) left-swap-scalar-mul-mul-algebra-Commutative-Ring r x y = inv ( is-homogeneous-map-linear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( linear-map-ev-left-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A) ( x)) ( r) ( y))
(rx)y = r(xy)
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where abstract associative-scalar-mul-mul-algebra-Commutative-Ring : (r : type-Commutative-Ring R) → (x y : type-algebra-Commutative-Ring R A) → mul-algebra-Commutative-Ring R A ( scalar-mul-algebra-Commutative-Ring R A r x) ( y) = scalar-mul-algebra-Commutative-Ring R A ( r) ( mul-algebra-Commutative-Ring R A x y) associative-scalar-mul-mul-algebra-Commutative-Ring r x y = is-homogeneous-map-linear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( linear-map-ev-right-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A) ( y)) ( r) ( x)
Distributivity of multiplication over addition
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where abstract left-distributive-mul-add-algebra-Commutative-Ring : (x y z : type-algebra-Commutative-Ring R A) → mul-algebra-Commutative-Ring R A ( x) ( add-algebra-Commutative-Ring R A y z) = add-algebra-Commutative-Ring R A ( mul-algebra-Commutative-Ring R A x y) ( mul-algebra-Commutative-Ring R A x z) left-distributive-mul-add-algebra-Commutative-Ring x = is-additive-map-linear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( linear-map-ev-left-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A) ( x)) right-distributive-mul-add-algebra-Commutative-Ring : (x y z : type-algebra-Commutative-Ring R A) → mul-algebra-Commutative-Ring R A ( add-algebra-Commutative-Ring R A x y) ( z) = add-algebra-Commutative-Ring R A ( mul-algebra-Commutative-Ring R A x z) ( mul-algebra-Commutative-Ring R A y z) right-distributive-mul-add-algebra-Commutative-Ring x y z = is-additive-map-linear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( linear-map-ev-right-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A) ( z)) ( x) ( y)
Zero laws of multiplication
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where abstract left-zero-law-mul-algebra-Commutative-Ring : (x : type-algebra-Commutative-Ring R A) → mul-algebra-Commutative-Ring R A (zero-algebra-Commutative-Ring R A) x = zero-algebra-Commutative-Ring R A left-zero-law-mul-algebra-Commutative-Ring = left-zero-law-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A) right-zero-law-mul-algebra-Commutative-Ring : (x : type-algebra-Commutative-Ring R A) → mul-algebra-Commutative-Ring R A x (zero-algebra-Commutative-Ring R A) = zero-algebra-Commutative-Ring R A right-zero-law-mul-algebra-Commutative-Ring = right-zero-law-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( left-module-algebra-Commutative-Ring R A) ( bilinear-mul-algebra-Commutative-Ring R A)
Every commutative ring is an algebra over itself
algebra-commutative-ring-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → algebra-Commutative-Ring l R algebra-commutative-ring-Commutative-Ring R = ( left-module-commutative-ring-Commutative-Ring R , mul-Commutative-Ring R , ( λ x → ( ( λ y z → right-distributive-mul-add-Commutative-Ring R y z x) , ( λ y z → associative-mul-Commutative-Ring R y z x))) , ( λ y → ( left-distributive-mul-add-Commutative-Ring R y , left-swap-mul-Commutative-Ring R y)))
External links
- Algebra over a commutative ring at Wikidata
- Algebras over rings on Wikipedia
Recent changes
- 2026-02-13. Louis Wasserman. Algebras over commutative rings (#1780).