Algebras over commutative rings

Content created by Louis Wasserman.

Created on 2026-02-13.
Last modified on 2026-02-13.

module commutative-algebra.algebras-commutative-rings where
Imports
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

open import group-theory.abelian-groups

open import linear-algebra.bilinear-maps-left-modules-commutative-rings
open import linear-algebra.left-modules-commutative-rings
open import linear-algebra.linear-maps-left-modules-commutative-rings

Idea

An algebra over a commutative ring R is a left module M over R equipped with a bilinear map, called its product, * : M → M → M.

Definition

algebra-Commutative-Ring :
  {l1 : Level} (l2 : Level)  Commutative-Ring l1  UU (l1  lsuc l2)
algebra-Commutative-Ring l2 R =
  Σ ( left-module-Commutative-Ring l2 R)
    ( λ M  bilinear-map-left-module-Commutative-Ring R M M M)

Properties

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  left-module-algebra-Commutative-Ring : left-module-Commutative-Ring l2 R
  left-module-algebra-Commutative-Ring = pr1 A

  set-algebra-Commutative-Ring : Set l2
  set-algebra-Commutative-Ring =
    set-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring

  type-algebra-Commutative-Ring : UU l2
  type-algebra-Commutative-Ring = type-Set set-algebra-Commutative-Ring

  ab-add-algebra-Commutative-Ring : Ab l2
  ab-add-algebra-Commutative-Ring =
    ab-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring

  add-algebra-Commutative-Ring :
    type-algebra-Commutative-Ring  type-algebra-Commutative-Ring 
    type-algebra-Commutative-Ring
  add-algebra-Commutative-Ring = add-Ab ab-add-algebra-Commutative-Ring

  zero-algebra-Commutative-Ring : type-algebra-Commutative-Ring
  zero-algebra-Commutative-Ring = zero-Ab ab-add-algebra-Commutative-Ring

  neg-algebra-Commutative-Ring :
    type-algebra-Commutative-Ring  type-algebra-Commutative-Ring
  neg-algebra-Commutative-Ring = neg-Ab ab-add-algebra-Commutative-Ring

  scalar-mul-algebra-Commutative-Ring :
    type-Commutative-Ring R  type-algebra-Commutative-Ring 
    type-algebra-Commutative-Ring
  scalar-mul-algebra-Commutative-Ring =
    mul-left-module-Commutative-Ring R left-module-algebra-Commutative-Ring

  bilinear-mul-algebra-Commutative-Ring :
    bilinear-map-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring)
      ( left-module-algebra-Commutative-Ring)
      ( left-module-algebra-Commutative-Ring)
  bilinear-mul-algebra-Commutative-Ring = pr2 A

  mul-algebra-Commutative-Ring :
    type-algebra-Commutative-Ring  type-algebra-Commutative-Ring 
    type-algebra-Commutative-Ring
  mul-algebra-Commutative-Ring =
    map-bilinear-map-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring)
      ( left-module-algebra-Commutative-Ring)
      ( left-module-algebra-Commutative-Ring)
      ( bilinear-mul-algebra-Commutative-Ring)

  left-unit-law-scalar-mul-algebra-Commutative-Ring :
    (x : type-algebra-Commutative-Ring) 
    scalar-mul-algebra-Commutative-Ring (one-Commutative-Ring R) x  x
  left-unit-law-scalar-mul-algebra-Commutative-Ring =
    left-unit-law-mul-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring)

  right-distributive-scalar-mul-add-algebra-Commutative-Ring :
    (r s : type-Commutative-Ring R) (x : type-algebra-Commutative-Ring) 
    scalar-mul-algebra-Commutative-Ring (add-Commutative-Ring R r s) x 
    add-algebra-Commutative-Ring
      ( scalar-mul-algebra-Commutative-Ring r x)
      ( scalar-mul-algebra-Commutative-Ring s x)
  right-distributive-scalar-mul-add-algebra-Commutative-Ring =
    right-distributive-mul-add-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring)

(rs)y = r(sy)

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  abstract
    associative-scalar-mul-algebra-Commutative-Ring :
      (r s : type-Commutative-Ring R) 
      (x : type-algebra-Commutative-Ring R A) 
      scalar-mul-algebra-Commutative-Ring R A
        ( mul-Commutative-Ring R r s)
        ( x) 
      scalar-mul-algebra-Commutative-Ring R A
        ( r)
        ( scalar-mul-algebra-Commutative-Ring R A s x)
    associative-scalar-mul-algebra-Commutative-Ring =
      associative-mul-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)

r(xy) = x(ry)

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  abstract
    left-swap-scalar-mul-mul-algebra-Commutative-Ring :
      (r : type-Commutative-Ring R) (x y : type-algebra-Commutative-Ring R A) 
      scalar-mul-algebra-Commutative-Ring R A
        ( r)
        ( mul-algebra-Commutative-Ring R A x y) 
      mul-algebra-Commutative-Ring R A
        ( x)
        ( scalar-mul-algebra-Commutative-Ring R A r y)
    left-swap-scalar-mul-mul-algebra-Commutative-Ring r x y =
      inv
        ( is-homogeneous-map-linear-map-left-module-Commutative-Ring
          ( R)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( linear-map-ev-left-bilinear-map-left-module-Commutative-Ring
            ( R)
            ( left-module-algebra-Commutative-Ring R A)
            ( left-module-algebra-Commutative-Ring R A)
            ( left-module-algebra-Commutative-Ring R A)
            ( bilinear-mul-algebra-Commutative-Ring R A)
            ( x))
          ( r)
          ( y))

(rx)y = r(xy)

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  abstract
    associative-scalar-mul-mul-algebra-Commutative-Ring :
      (r : type-Commutative-Ring R) 
      (x y : type-algebra-Commutative-Ring R A) 
      mul-algebra-Commutative-Ring R A
        ( scalar-mul-algebra-Commutative-Ring R A r x)
        ( y) 
      scalar-mul-algebra-Commutative-Ring R A
        ( r)
        ( mul-algebra-Commutative-Ring R A x y)
    associative-scalar-mul-mul-algebra-Commutative-Ring r x y =
      is-homogeneous-map-linear-map-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( linear-map-ev-right-bilinear-map-left-module-Commutative-Ring
          ( R)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( bilinear-mul-algebra-Commutative-Ring R A)
          ( y))
        ( r)
        ( x)

Distributivity of multiplication over addition

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  abstract
    left-distributive-mul-add-algebra-Commutative-Ring :
      (x y z : type-algebra-Commutative-Ring R A) 
      mul-algebra-Commutative-Ring R A
        ( x)
        ( add-algebra-Commutative-Ring R A y z) 
      add-algebra-Commutative-Ring R A
        ( mul-algebra-Commutative-Ring R A x y)
        ( mul-algebra-Commutative-Ring R A x z)
    left-distributive-mul-add-algebra-Commutative-Ring x =
      is-additive-map-linear-map-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( linear-map-ev-left-bilinear-map-left-module-Commutative-Ring
          ( R)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( bilinear-mul-algebra-Commutative-Ring R A)
          ( x))

    right-distributive-mul-add-algebra-Commutative-Ring :
      (x y z : type-algebra-Commutative-Ring R A) 
      mul-algebra-Commutative-Ring R A
        ( add-algebra-Commutative-Ring R A x y)
        ( z) 
      add-algebra-Commutative-Ring R A
        ( mul-algebra-Commutative-Ring R A x z)
        ( mul-algebra-Commutative-Ring R A y z)
    right-distributive-mul-add-algebra-Commutative-Ring x y z =
      is-additive-map-linear-map-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( linear-map-ev-right-bilinear-map-left-module-Commutative-Ring
          ( R)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( left-module-algebra-Commutative-Ring R A)
          ( bilinear-mul-algebra-Commutative-Ring R A)
          ( z))
        ( x)
        ( y)

Zero laws of multiplication

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  abstract
    left-zero-law-mul-algebra-Commutative-Ring :
      (x : type-algebra-Commutative-Ring R A) 
      mul-algebra-Commutative-Ring R A (zero-algebra-Commutative-Ring R A) x 
      zero-algebra-Commutative-Ring R A
    left-zero-law-mul-algebra-Commutative-Ring =
      left-zero-law-bilinear-map-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( bilinear-mul-algebra-Commutative-Ring R A)

    right-zero-law-mul-algebra-Commutative-Ring :
      (x : type-algebra-Commutative-Ring R A) 
      mul-algebra-Commutative-Ring R A x (zero-algebra-Commutative-Ring R A) 
      zero-algebra-Commutative-Ring R A
    right-zero-law-mul-algebra-Commutative-Ring =
      right-zero-law-bilinear-map-left-module-Commutative-Ring
        ( R)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( left-module-algebra-Commutative-Ring R A)
        ( bilinear-mul-algebra-Commutative-Ring R A)

Every commutative ring is an algebra over itself

algebra-commutative-ring-Commutative-Ring :
  {l : Level} (R : Commutative-Ring l)  algebra-Commutative-Ring l R
algebra-commutative-ring-Commutative-Ring R =
  ( left-module-commutative-ring-Commutative-Ring R ,
    mul-Commutative-Ring R ,
    ( λ x 
      ( ( λ y z  right-distributive-mul-add-Commutative-Ring R y z x) ,
        ( λ y z  associative-mul-Commutative-Ring R y z x))) ,
    ( λ y 
      ( left-distributive-mul-add-Commutative-Ring R y ,
        left-swap-mul-Commutative-Ring R y)))

Recent changes