Addition of positive, negative, and nonnegative real numbers
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module real-numbers.addition-positive-and-negative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.positive-real-numbers
Idea
On this page we describe properties of addition of positive, negative, and nonnegative real numbers.
Properties
The sum of a nonnegative and a positive real number is positive
abstract is-positive-add-nonnegative-positive-ℝ : {l1 l2 : Level} {x : ℝ l1} {y : ℝ l2} → is-nonnegative-ℝ x → is-positive-ℝ y → is-positive-ℝ (x +ℝ y) is-positive-add-nonnegative-positive-ℝ {x = x} {y = y} 0≤x 0<y = is-positive-le-ℝ⁰⁺ ( x , 0≤x) ( x +ℝ y) ( le-left-add-real-ℝ⁺ x (y , 0<y)) add-nonnegative-positive-ℝ : {l1 l2 : Level} → ℝ⁰⁺ l1 → ℝ⁺ l2 → ℝ⁺ (l1 ⊔ l2) add-nonnegative-positive-ℝ (x , 0≤x) (y , 0<y) = ( x +ℝ y , is-positive-add-nonnegative-positive-ℝ 0≤x 0<y)
Recent changes
- 2025-12-03. Louis Wasserman. Cauchy-Schwarz inequality (#1712).