Mere equality
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elisabeth Stenholm, Julian KG, fernabnor and louismntnu.
Created on 2022-02-09.
Last modified on 2023-11-24.
module foundation.mere-equality where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.reflecting-maps-equivalence-relations open import foundation.universe-levels open import foundation-core.equivalence-relations open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets
Idea
Two elements in a type are said to be merely equal if there is an element of the propositionally truncated identity type between them.
Definition
module _ {l : Level} {A : UU l} where mere-eq-Prop : A → A → Prop l mere-eq-Prop x y = trunc-Prop (x = y) mere-eq : A → A → UU l mere-eq x y = type-Prop (mere-eq-Prop x y) is-prop-mere-eq : (x y : A) → is-prop (mere-eq x y) is-prop-mere-eq x y = is-prop-type-trunc-Prop
Properties
Reflexivity
abstract refl-mere-eq : {l : Level} {A : UU l} → is-reflexive (mere-eq {l} {A}) refl-mere-eq _ = unit-trunc-Prop refl
Symmetry
abstract symmetric-mere-eq : {l : Level} {A : UU l} → is-symmetric (mere-eq {l} {A}) symmetric-mere-eq _ _ = map-trunc-Prop inv
Transitivity
abstract transitive-mere-eq : {l : Level} {A : UU l} → is-transitive (mere-eq {l} {A}) transitive-mere-eq x y z p q = apply-universal-property-trunc-Prop q ( mere-eq-Prop x z) ( λ p' → map-trunc-Prop (p' ∙_) p)
Mere equality is an equivalence relation
mere-eq-equivalence-relation : {l1 : Level} (A : UU l1) → equivalence-relation l1 A pr1 (mere-eq-equivalence-relation A) = mere-eq-Prop pr1 (pr2 (mere-eq-equivalence-relation A)) = refl-mere-eq pr1 (pr2 (pr2 (mere-eq-equivalence-relation A))) = symmetric-mere-eq pr2 (pr2 (pr2 (mere-eq-equivalence-relation A))) = transitive-mere-eq
Any map into a set reflects mere equality
module _ {l1 l2 : Level} {A : UU l1} (X : Set l2) (f : A → type-Set X) where reflects-mere-eq : reflects-equivalence-relation (mere-eq-equivalence-relation A) f reflects-mere-eq {x} {y} r = apply-universal-property-trunc-Prop r ( Id-Prop X (f x) (f y)) ( ap f) reflecting-map-mere-eq : reflecting-map-equivalence-relation ( mere-eq-equivalence-relation A) ( type-Set X) pr1 reflecting-map-mere-eq = f pr2 reflecting-map-mere-eq = reflects-mere-eq
If mere equality maps into the identity type of A
, then A
is a set
is-set-mere-eq-in-id : {l : Level} {A : UU l} → ((x y : A) → mere-eq x y → x = y) → is-set A is-set-mere-eq-in-id = is-set-prop-in-id ( mere-eq) ( is-prop-mere-eq) ( refl-mere-eq)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).