Mere equality

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elisabeth Stenholm, Julian KG, fernabnor and louismntnu.

Created on 2022-02-09.
Last modified on 2025-08-14.

module foundation.mere-equality where
Imports
open import foundation.action-on-identifications-functions
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.double-negation
open import foundation.double-negation-dense-equality
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-propositional-truncation
open import foundation.irrefutable-equality
open import foundation.propositional-truncations
open import foundation.reflecting-maps-equivalence-relations
open import foundation.retracts-of-types
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import foundation-core.equivalence-relations
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.sets

Idea

Two elements x and y in a type A are said to be merely equal if there is an element of the propositionally truncated identity type between them.

 ║ x = y ║₋₁

Definitions

module _
  {l : Level} {A : UU l}
  where

  mere-eq-Prop : A  A  Prop l
  mere-eq-Prop x y = trunc-Prop (x  y)

  mere-eq : A  A  UU l
  mere-eq x y = type-Prop (mere-eq-Prop x y)

  is-prop-mere-eq : (x y : A)  is-prop (mere-eq x y)
  is-prop-mere-eq x y = is-prop-type-trunc-Prop

Types whose elements are all merely equal

all-elements-merely-equal : {l : Level}  UU l  UU l
all-elements-merely-equal A = (x y : A)  mere-eq x y

Properties

Reflexivity

refl-mere-eq : {l : Level} {A : UU l}  is-reflexive (mere-eq {l} {A})
refl-mere-eq a = unit-trunc-Prop refl

mere-eq-eq : {l : Level} {A : UU l} {x y : A}  x  y  mere-eq x y
mere-eq-eq {x = x} refl = refl-mere-eq x

Symmetry

abstract
  symmetric-mere-eq :
    {l : Level} {A : UU l}  is-symmetric (mere-eq {l} {A})
  symmetric-mere-eq _ _ = map-trunc-Prop inv

Transitivity

abstract
  transitive-mere-eq :
    {l : Level} {A : UU l}  is-transitive (mere-eq {l} {A})
  transitive-mere-eq x y z p q =
    apply-universal-property-trunc-Prop q
      ( mere-eq-Prop x z)
      ( λ p'  map-trunc-Prop (p' ∙_) p)

Mere equality is an equivalence relation

mere-eq-equivalence-relation :
  {l1 : Level} (A : UU l1)  equivalence-relation l1 A
mere-eq-equivalence-relation A =
  ( mere-eq-Prop , refl-mere-eq , symmetric-mere-eq , transitive-mere-eq)

Any map into a set reflects mere equality

module _
  {l1 l2 : Level} {A : UU l1} (X : Set l2) (f : A  type-Set X)
  where

  reflects-mere-eq :
    reflects-equivalence-relation (mere-eq-equivalence-relation A) f
  reflects-mere-eq {x} {y} r =
    apply-universal-property-trunc-Prop r
      ( Id-Prop X (f x) (f y))
      ( ap f)

  reflecting-map-mere-eq :
    reflecting-map-equivalence-relation
      ( mere-eq-equivalence-relation A)
      ( type-Set X)
  reflecting-map-mere-eq = (f , reflects-mere-eq)

If mere equality maps into the identity type of A, then A is a set

is-set-mere-eq-in-id :
  {l : Level} {A : UU l}  ((x y : A)  mere-eq x y  x  y)  is-set A
is-set-mere-eq-in-id =
  is-set-prop-in-id mere-eq is-prop-mere-eq refl-mere-eq

In other words, if equality on A has an ε-operator, or “split support”, then A is a set.

Retracts of types with merely equal elements

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  all-elements-merely-equal-retract-of :
    B retract-of A  all-elements-merely-equal A  all-elements-merely-equal B
  all-elements-merely-equal-retract-of (i , r , R) H x y =
    rec-trunc-Prop
      ( mere-eq-Prop x y)
      ( λ p  unit-trunc-Prop (inv (R x)  ap r p  R y))
      ( H (i x) (i y))

  all-elements-merely-equal-equiv :
    B  A  all-elements-merely-equal A  all-elements-merely-equal B
  all-elements-merely-equal-equiv e =
    all-elements-merely-equal-retract-of (retract-equiv e)

  all-elements-merely-equal-equiv' :
    A  B  all-elements-merely-equal A  all-elements-merely-equal B
  all-elements-merely-equal-equiv' e =
    all-elements-merely-equal-retract-of (retract-inv-equiv e)

Dependent sums of types with merely equal elements

all-elements-merely-equal-Σ :
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} 
  all-elements-merely-equal A 
  ((x : A)  all-elements-merely-equal (B x)) 
  all-elements-merely-equal (Σ A B)
all-elements-merely-equal-Σ {B = B} mA mB x y =
  rec-trunc-Prop
    ( mere-eq-Prop x y)
    ( λ p  map-trunc-Prop (eq-pair-Σ p) (mB (pr1 y) (tr B p (pr2 x)) (pr2 y)))
    ( mA (pr1 x) (pr1 y))

Mere equality implies irrefutable equality

irrefutable-eq-mere-eq :
  {l : Level} {A : UU l} {x y : A}  mere-eq x y  irrefutable-eq x y
irrefutable-eq-mere-eq = intro-double-negation-type-trunc-Prop

has-double-negation-dense-equality-all-elements-merely-equal :
  {l : Level} {A : UU l} 
  all-elements-merely-equal A  has-double-negation-dense-equality A
has-double-negation-dense-equality-all-elements-merely-equal H x y =
  irrefutable-eq-mere-eq (H x y)

Recent changes