Counting the elements of dependent pair types
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2022-02-10.
Last modified on 2024-04-11.
module univalent-combinatorics.counting-dependent-pair-types where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.sums-of-natural-numbers open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.sections open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.type-arithmetic-coproduct-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation.universe-levels open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.counting open import univalent-combinatorics.decidable-propositions open import univalent-combinatorics.double-counting open import univalent-combinatorics.standard-finite-types
Idea
Consider a type family B
over A
, and consider the following statements
- The elements of
A
can be counted. - For each
x : A
, the elements ofB x
can be counted - The elements of
Σ A B
can be counted.
If 1 holds, then 2 holds if and only if 3 holds. Furthermore if 2 and 3 hold,
then 1 holds if and only if the elements of Σ (x : A), ¬ (B x)
can be counted,
i.e., if the elements in the complement of B
can be counted.
Proofs
Σ A B
can be counted if A
can be counted and if each B x
can be counted
count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → (k : ℕ) (e : Fin k ≃ A) → ((x : A) → count (B x)) → count (Σ A B) count-Σ' zero-ℕ e f = count-is-empty ( λ x → is-empty-is-zero-number-of-elements-count (pair zero-ℕ e) refl (pr1 x)) count-Σ' {l1} {l2} {A} {B} (succ-ℕ k) e f = count-equiv ( ( equiv-Σ-equiv-base B e) ∘e ( ( inv-equiv ( right-distributive-Σ-coproduct (Fin k) unit (B ∘ map-equiv e))) ∘e ( equiv-coproduct ( id-equiv) ( inv-equiv ( left-unit-law-Σ (B ∘ (map-equiv e ∘ inr))))))) ( count-coproduct ( count-Σ' k id-equiv (λ x → f (map-equiv e (inl x)))) ( f (map-equiv e (inr star)))) abstract equiv-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → (k : ℕ) (e : Fin k ≃ A) (f : (x : A) → count (B x)) → Fin (number-of-elements-count (count-Σ' k e f)) ≃ Σ A B equiv-count-Σ' k e f = pr2 (count-Σ' k e f) count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count A → ((x : A) → count (B x)) → count (Σ A B) pr1 (count-Σ (pair k e) f) = number-of-elements-count (count-Σ' k e f) pr2 (count-Σ (pair k e) f) = equiv-count-Σ' k e f
We compute the number of elements of a Σ-type
abstract number-of-elements-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (k : ℕ) (e : Fin k ≃ A) → (f : (x : A) → count (B x)) → Id ( number-of-elements-count (count-Σ' k e f)) ( sum-Fin-ℕ k (λ x → number-of-elements-count (f (map-equiv e x)))) number-of-elements-count-Σ' zero-ℕ e f = refl number-of-elements-count-Σ' (succ-ℕ k) e f = ( number-of-elements-count-coproduct ( count-Σ' k id-equiv (λ x → f (map-equiv e (inl x)))) ( f (map-equiv e (inr star)))) ∙ ( ap ( _+ℕ (number-of-elements-count (f (map-equiv e (inr star))))) ( number-of-elements-count-Σ' k id-equiv (λ x → f (map-equiv e (inl x))))) abstract number-of-elements-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (e : count A) (f : (x : A) → count (B x)) → Id ( number-of-elements-count (count-Σ e f)) ( sum-count-ℕ e (λ x → number-of-elements-count (f x))) number-of-elements-count-Σ (pair k e) f = number-of-elements-count-Σ' k e f
If A
and Σ A B
can be counted, then each B x
can be counted
count-fiber-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → has-decidable-equality A → count (Σ A B) → (x : A) → count (B x) count-fiber-count-Σ {B = B} d f x = count-equiv ( equiv-fiber-pr1 B x) ( count-Σ f ( λ z → count-eq d (pr1 z) x)) count-fiber-count-Σ-count-base : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count A → count (Σ A B) → (x : A) → count (B x) count-fiber-count-Σ-count-base e f x = count-fiber-count-Σ (has-decidable-equality-count e) f x
If Σ A B
and each B x
can be counted, and if B
has a section, then A
can be counted
count-fiber-map-section-family : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x) → count (Σ A B) → ((x : A) → count (B x)) → (t : Σ A B) → count (fiber (map-section-family b) t) count-fiber-map-section-family {l1} {l2} {A} {B} b e f (pair y z) = count-equiv' ( ( ( left-unit-law-Σ-is-contr ( is-torsorial-Id' y) ( pair y refl)) ∘e ( inv-associative-Σ A ( λ x → Id x y) ( λ t → Id (tr B (pr2 t) (b (pr1 t))) z))) ∘e ( equiv-tot (λ x → equiv-pair-eq-Σ (pair x (b x)) (pair y z)))) ( count-eq (has-decidable-equality-count (f y)) (b y) z) count-base-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x) → count (Σ A B) → ((x : A) → count (B x)) → count A count-base-count-Σ b e f = count-equiv ( equiv-total-fiber (map-section-family b)) ( count-Σ e (count-fiber-map-section-family b e f))
More generally, if Σ A B
and each B x
can be counted, then A
can be
counted if and only if the type Σ (x : A), ¬ (B x)
can be counted. However, to
avoid having to invoke function extensionality, we show that if Σ A B
and each
B x
can be counted, then A
can be counted if and only if
count (Σ A (λ x → is-zero-ℕ (number-of-elements-count (f x)))),
where f : (x : A) → count (B x)
. Thus, we have a precise characterization of
when the elements of A
can be counted, if it is given that Σ A B
and each
B x
can be counted.
section-count-base-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count (Σ A B) → (f : (x : A) → count (B x)) → count (Σ A (λ x → is-zero-ℕ (number-of-elements-count (f x)))) → (x : A) → (B x) + (is-zero-ℕ (number-of-elements-count (f x))) section-count-base-count-Σ' e f g x with is-decidable-is-zero-ℕ (number-of-elements-count (f x)) ... | inl p = inr p ... | inr H with is-successor-is-nonzero-ℕ H ... | (pair k p) = inl (map-equiv-count (f x) (tr Fin (inv p) (zero-Fin k))) count-base-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count (Σ A B) → (f : (x : A) → count (B x)) → count (Σ A (λ x → is-zero-ℕ (number-of-elements-count (f x)))) → count A count-base-count-Σ' {l1} {l2} {A} {B} e f g = count-base-count-Σ ( section-count-base-count-Σ' e f g) ( count-equiv' ( left-distributive-Σ-coproduct A B ( λ x → is-zero-ℕ (number-of-elements-count (f x)))) ( count-coproduct e g)) ( λ x → count-coproduct ( f x) ( count-eq has-decidable-equality-ℕ ( number-of-elements-count (f x)) ( zero-ℕ)))
If A
can be counted and Σ A P
can be counted for a subtype of A
, then P
is decidable
is-decidable-count-Σ : {l1 l2 : Level} {X : UU l1} {P : X → UU l2} → count X → count (Σ X P) → (x : X) → is-decidable (P x) is-decidable-count-Σ e f x = is-decidable-count (count-fiber-count-Σ-count-base e f x)
abstract double-counting-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (count-A : count A) (count-B : (x : A) → count (B x)) (count-C : count (Σ A B)) → Id ( number-of-elements-count count-C) ( sum-count-ℕ count-A (λ x → number-of-elements-count (count-B x))) double-counting-Σ count-A count-B count-C = ( double-counting count-C (count-Σ count-A count-B)) ∙ ( number-of-elements-count-Σ count-A count-B) abstract sum-number-of-elements-count-fiber-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (e : count A) (f : count (Σ A B)) → Id ( sum-count-ℕ e ( λ x → number-of-elements-count (count-fiber-count-Σ-count-base e f x))) ( number-of-elements-count f) sum-number-of-elements-count-fiber-count-Σ e f = ( inv ( number-of-elements-count-Σ e (count-fiber-count-Σ-count-base e f))) ∙ ( double-counting (count-Σ e (count-fiber-count-Σ-count-base e f)) f) abstract double-counting-fiber-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (count-A : count A) (count-B : (x : A) → count (B x)) (count-C : count (Σ A B)) (x : A) → Id ( number-of-elements-count (count-B x)) ( number-of-elements-count ( count-fiber-count-Σ-count-base count-A count-C x)) double-counting-fiber-count-Σ count-A count-B count-C x = double-counting ( count-B x) ( count-fiber-count-Σ-count-base count-A count-C x) abstract sum-number-of-elements-count-base-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x) → (count-ΣAB : count (Σ A B)) (count-B : (x : A) → count (B x)) → Id ( sum-count-ℕ ( count-base-count-Σ b count-ΣAB count-B) ( λ x → number-of-elements-count (count-B x))) ( number-of-elements-count count-ΣAB) sum-number-of-elements-count-base-count-Σ b count-ΣAB count-B = ( inv ( number-of-elements-count-Σ ( count-base-count-Σ b count-ΣAB count-B) ( count-B))) ∙ ( double-counting ( count-Σ (count-base-count-Σ b count-ΣAB count-B) count-B) ( count-ΣAB)) abstract double-counting-base-count-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x) → (count-A : count A) (count-B : (x : A) → count (B x)) (count-ΣAB : count (Σ A B)) → Id ( number-of-elements-count (count-base-count-Σ b count-ΣAB count-B)) ( number-of-elements-count count-A) double-counting-base-count-Σ b count-A count-B count-ΣAB = double-counting (count-base-count-Σ b count-ΣAB count-B) count-A abstract sum-number-of-elements-count-base-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (count-ΣAB : count (Σ A B)) → ( count-B : (x : A) → count (B x)) → ( count-nB : count (Σ A (λ x → is-zero-ℕ (number-of-elements-count (count-B x))))) → Id ( sum-count-ℕ ( count-base-count-Σ' count-ΣAB count-B count-nB) ( λ x → number-of-elements-count (count-B x))) ( number-of-elements-count count-ΣAB) sum-number-of-elements-count-base-count-Σ' count-ΣAB count-B count-nB = ( inv ( number-of-elements-count-Σ ( count-base-count-Σ' count-ΣAB count-B count-nB) ( count-B))) ∙ ( double-counting ( count-Σ ( count-base-count-Σ' count-ΣAB count-B count-nB) ( count-B)) ( count-ΣAB)) abstract double-counting-base-count-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (count-A : count A) ( count-B : (x : A) → count (B x)) (count-ΣAB : count (Σ A B)) → ( count-nB : count (Σ A (λ x → is-zero-ℕ (number-of-elements-count (count-B x))))) → Id ( number-of-elements-count ( count-base-count-Σ' count-ΣAB count-B count-nB)) ( number-of-elements-count count-A) double-counting-base-count-Σ' count-A count-B count-ΣAB count-nB = double-counting (count-base-count-Σ' count-ΣAB count-B count-nB) count-A
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-14. Egbert Rijke. Move torsoriality of the identity type to
foundation-core.torsorial-type-families
(#1065). - 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871).