The Yoneda lemma for categories
Content created by Fredrik Bakke, Egbert Rijke, Daniel Gratzer and Elisabeth Stenholm.
Created on 2023-09-18.
Last modified on 2024-02-08.
module category-theory.yoneda-lemma-categories where
Imports
open import category-theory.categories open import category-theory.copresheaf-categories open import category-theory.natural-transformations-functors-from-small-to-large-categories open import category-theory.representable-functors-categories open import category-theory.yoneda-lemma-precategories open import foundation.category-of-sets open import foundation.equivalences open import foundation.universe-levels
Idea
Given a category C
, an object c
, and a
functor F
from C
to the
category of sets
F : C → Set,
there is an equivalence between the
set of natural transformations
from the functor
represented by c
to
F
and the set F c
.
Nat(Hom(c , -) , F) ≃ F c
More precisely, the Yoneda lemma asserts that the map from the type of
natural transformations to the type F c
defined by evaluating the component of
the natural transformation at the object c
at the identity arrow on c
is an
equivalence.
Theorem
The Yoneda lemma into the large category of sets
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (c : obj-Category C) (F : copresheaf-Precategory (precategory-Category C) l3) where map-yoneda-Category : hom-copresheaf-Precategory ( precategory-Category C) (representable-functor-Category C c) F → element-copresheaf-Precategory (precategory-Category C) F c map-yoneda-Category = map-yoneda-Precategory (precategory-Category C) c F
The inverse to the Yoneda map:
hom-family-extension-yoneda-Category : (u : element-copresheaf-Precategory (precategory-Category C) F c) → hom-family-functor-Small-Large-Category C Set-Large-Category (representable-functor-Category C c) F hom-family-extension-yoneda-Category = hom-family-extension-yoneda-Precategory (precategory-Category C) c F naturality-extension-yoneda-Category : (u : element-copresheaf-Precategory (precategory-Category C) F c) → is-natural-transformation-Small-Large-Category C Set-Large-Category (representable-functor-Category C c) F ( hom-family-extension-yoneda-Category u) naturality-extension-yoneda-Category = naturality-extension-yoneda-Precategory (precategory-Category C) c F extension-yoneda-Category : element-copresheaf-Precategory (precategory-Category C) F c → hom-copresheaf-Precategory ( precategory-Category C) (representable-functor-Category C c) F extension-yoneda-Category = extension-yoneda-Precategory (precategory-Category C) c F lemma-yoneda-Category : is-equiv map-yoneda-Category lemma-yoneda-Category = lemma-yoneda-Precategory (precategory-Category C) c F equiv-lemma-yoneda-Category : hom-copresheaf-Precategory ( precategory-Category C) (representable-functor-Category C c) F ≃ element-copresheaf-Precategory (precategory-Category C) F c equiv-lemma-yoneda-Category = equiv-lemma-yoneda-Precategory (precategory-Category C) c F
Corollaries
The Yoneda lemma for representable functors
An important special-case of the Yoneda lemma is when F
is itself a
representable functor F = Hom(-, d)
.
module _ {l1 l2 : Level} (C : Category l1 l2) (c d : obj-Category C) where equiv-lemma-yoneda-representable-Category : hom-copresheaf-Precategory ( precategory-Category C) ( representable-functor-Category C c) ( representable-functor-Category C d) ≃ hom-Category C d c equiv-lemma-yoneda-representable-Category = equiv-lemma-yoneda-Category C c (representable-functor-Category C d)
See also
External links
- The Yoneda embedding at 1lab
- Yoneda lemma at Lab
- The Yoneda lemma at Math3ma
- Yoneda lemma at Wikipedia
- Yoneda lemma at Wikidata
Recent changes
- 2024-02-08. Fredrik Bakke. Computational identity types (#1015).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-24. Fredrik Bakke. Indiscrete precategories (#896).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).