The field of real numbers
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
module real-numbers.field-of-real-numbers where
Imports
open import commutative-algebra.heyting-fields open import commutative-algebra.invertible-elements-commutative-rings open import commutative-algebra.trivial-commutative-rings open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.universe-levels open import real-numbers.apartness-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.large-ring-of-real-numbers open import real-numbers.local-ring-of-real-numbers open import real-numbers.multiplicative-inverses-nonzero-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
The real numbers form a Heyting field at each universe level.
Definition
abstract is-zero-is-noninvertible-commutative-ring-ℝ : (l : Level) (x : ℝ l) → ¬ is-invertible-element-Commutative-Ring (commutative-ring-ℝ l) x → x = raise-ℝ l zero-ℝ is-zero-is-noninvertible-commutative-ring-ℝ l x ¬inv-x = eq-sim-ℝ ( sim-nonapart-ℝ _ _ ( λ x#raise-l-zero → ¬inv-x ( is-invertible-is-nonzero-ℝ ( x) ( apart-right-sim-ℝ ( x) ( raise-ℝ l zero-ℝ) ( zero-ℝ) ( sim-raise-ℝ' l zero-ℝ) ( x#raise-l-zero))))) is-heyting-field-local-commutative-ring-ℝ : (l : Level) → is-heyting-field-Local-Commutative-Ring (local-commutative-ring-ℝ l) is-heyting-field-local-commutative-ring-ℝ l = ( neq-raise-zero-one-ℝ l , is-zero-is-noninvertible-commutative-ring-ℝ l) heyting-field-ℝ : (l : Level) → Heyting-Field (lsuc l) heyting-field-ℝ l = ( local-commutative-ring-ℝ l , is-heyting-field-local-commutative-ring-ℝ l)
Recent changes
- 2025-11-21. Louis Wasserman. Vector spaces (#1689).