Linear forms in vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-forms-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.linear-maps-vector-spaces open import linear-algebra.vector-spaces
Idea
A
linear form¶
on a vector space V over a
Heyting field F is a
linear map from V to the vector
space of F over itself.
Definition
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) where is-linear-form-prop-Vector-Space : (type-Vector-Space F V → type-Heyting-Field F) → Prop (l1 ⊔ l2) is-linear-form-prop-Vector-Space = is-linear-map-prop-Vector-Space ( F) ( V) ( vector-space-heyting-field-Heyting-Field F) is-linear-form-Vector-Space : (type-Vector-Space F V → type-Heyting-Field F) → UU (l1 ⊔ l2) is-linear-form-Vector-Space f = type-Prop (is-linear-form-prop-Vector-Space f) linear-form-Vector-Space : UU (l1 ⊔ l2) linear-form-Vector-Space = type-subtype is-linear-form-prop-Vector-Space module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-form-Vector-Space F V) where map-linear-form-Vector-Space : type-Vector-Space F V → type-Heyting-Field F map-linear-form-Vector-Space = pr1 f is-linear-form-linear-form-Vector-Space : is-linear-form-Vector-Space F V map-linear-form-Vector-Space is-linear-form-linear-form-Vector-Space = pr2 f is-additive-map-linear-form-Vector-Space : (v w : type-Vector-Space F V) → map-linear-form-Vector-Space (add-Vector-Space F V v w) = add-Heyting-Field F ( map-linear-form-Vector-Space v) ( map-linear-form-Vector-Space w) is-additive-map-linear-form-Vector-Space = pr1 is-linear-form-linear-form-Vector-Space is-homogeneous-map-linear-form-Vector-Space : (c : type-Heyting-Field F) (v : type-Vector-Space F V) → map-linear-form-Vector-Space (mul-Vector-Space F V c v) = mul-Heyting-Field F c (map-linear-form-Vector-Space v) is-homogeneous-map-linear-form-Vector-Space = pr2 is-linear-form-linear-form-Vector-Space
Properties
A linear form maps zero to zero
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-form-Vector-Space F V) where abstract is-zero-map-zero-linear-form-Vector-Space : is-zero-Heyting-Field F ( map-linear-form-Vector-Space F V f (zero-Vector-Space F V)) is-zero-map-zero-linear-form-Vector-Space = is-zero-map-zero-linear-map-Vector-Space ( F) ( V) ( vector-space-heyting-field-Heyting-Field F) ( f)
A linear form maps -v to the negation of the map of v
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-form-Vector-Space F V) where abstract map-neg-linear-form-Vector-Space : (v : type-Vector-Space F V) → map-linear-form-Vector-Space F V f (neg-Vector-Space F V v) = neg-Heyting-Field F (map-linear-form-Vector-Space F V f v) map-neg-linear-form-Vector-Space = map-neg-linear-map-Vector-Space ( F) ( V) ( vector-space-heyting-field-Heyting-Field F) ( f)
External links
- Linear functional at Wikidata
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).