Binary dependent globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.binary-dependent-globular-types where
Imports
open import foundation.universe-levels open import globular-types.globular-types open import globular-types.points-globular-types
Idea
Consider two globular types G
and H
. A
binary dependent globular type¶
K
over G
and H
consists of
K₀ : G₀ → H₀ → Type
K' : (x x' : G₀) (y y' : H₀) →
K₀ x y → K₀ y y' → Binary-Dependent-Globular-Type (G' x x') (H' y y').
Definitions
Binary dependent globular types
record Binary-Dependent-Globular-Type {l1 l2 l3 l4 : Level} (l5 l6 : Level) (G : Globular-Type l1 l2) (H : Globular-Type l3 l4) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5 ⊔ lsuc l6) where coinductive field 0-cell-Binary-Dependent-Globular-Type : 0-cell-Globular-Type G → 0-cell-Globular-Type H → UU l5 field 1-cell-binary-dependent-globular-type-Binary-Dependent-Globular-Type : {x x' : 0-cell-Globular-Type G} {y y' : 0-cell-Globular-Type H} → 0-cell-Binary-Dependent-Globular-Type x y → 0-cell-Binary-Dependent-Globular-Type x' y' → Binary-Dependent-Globular-Type l6 l6 ( 1-cell-globular-type-Globular-Type G x x') ( 1-cell-globular-type-Globular-Type H y y') open Binary-Dependent-Globular-Type public module _ {l1 l2 l3 l4 l5 l6 : Level} {G : Globular-Type l1 l2} {H : Globular-Type l3 l4} (K : Binary-Dependent-Globular-Type l5 l6 G H) where 1-cell-Binary-Dependent-Globular-Type : {x x' : 0-cell-Globular-Type G} {y y' : 0-cell-Globular-Type H} → 0-cell-Binary-Dependent-Globular-Type K x y → 0-cell-Binary-Dependent-Globular-Type K x' y' → 1-cell-Globular-Type G x x' → 1-cell-Globular-Type H y y' → UU l6 1-cell-Binary-Dependent-Globular-Type u v = 0-cell-Binary-Dependent-Globular-Type ( 1-cell-binary-dependent-globular-type-Binary-Dependent-Globular-Type K u v)
Evaluating binary dependent globular types at a pair of points
ev-point-Binary-Dependent-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Globular-Type l1 l2} {H : Globular-Type l3 l4} (K : Binary-Dependent-Globular-Type l5 l6 G H) (x : point-Globular-Type G) (y : point-Globular-Type H) → Globular-Type l5 l6 0-cell-Globular-Type (ev-point-Binary-Dependent-Globular-Type K x y) = 0-cell-Binary-Dependent-Globular-Type K ( 0-cell-point-Globular-Type x) ( 0-cell-point-Globular-Type y) 1-cell-globular-type-Globular-Type ( ev-point-Binary-Dependent-Globular-Type K x y) u v = ev-point-Binary-Dependent-Globular-Type ( 1-cell-binary-dependent-globular-type-Binary-Dependent-Globular-Type K u v) ( 1-cell-point-point-Globular-Type x) ( 1-cell-point-point-Globular-Type y)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).