Equivalences of inverse sequential diagrams of types

Content created by Fredrik Bakke.

Created on 2024-01-11.
Last modified on 2024-01-11.

module foundation.equivalences-inverse-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.equality-dependent-function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.inverse-sequential-diagrams
open import foundation.morphisms-inverse-sequential-diagrams
open import foundation.structure-identity-principle
open import foundation.univalence
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.torsorial-type-families

Idea

An equivalence of inverse sequential diagrams A ≃ B is a commuting diagram of the form

  ⋯ ----> Aₙ₊₁ ----> Aₙ ----> ⋯ ----> A₁ ----> A₀
           |         |       |       |        |
  ⋯        |         |       ⋯       |        |
           v         v       v       v        v
  ⋯ ----> Bₙ₊₁ ----> Bₙ ----> ⋯ ----> B₁ ----> B₀.

where every vertical map is an equivalence.

Definitions

equiv-inverse-sequential-diagram :
  {l1 l2 : Level}
  (A : inverse-sequential-diagram l1)
  (B : inverse-sequential-diagram l2) 
  UU (l1  l2)
equiv-inverse-sequential-diagram A B =
  Σ ( (n : ) 
      family-inverse-sequential-diagram A n 
      family-inverse-sequential-diagram B n)
    ( λ e 
      (n : )  naturality-hom-inverse-sequential-diagram A B (map-equiv  e) n)

hom-equiv-inverse-sequential-diagram :
  {l1 l2 : Level}
  (A : inverse-sequential-diagram l1)
  (B : inverse-sequential-diagram l2) 
  equiv-inverse-sequential-diagram A B 
  hom-inverse-sequential-diagram A B
pr1 (hom-equiv-inverse-sequential-diagram A B e) n = pr1 (pr1 e n)
pr2 (hom-equiv-inverse-sequential-diagram A B e) = pr2 e

Properties

Characterizing equality of inverse sequential diagrams

id-equiv-inverse-sequential-diagram :
  {l : Level} (A : inverse-sequential-diagram l) 
  equiv-inverse-sequential-diagram A A
pr1 (id-equiv-inverse-sequential-diagram A) n = id-equiv
pr2 (id-equiv-inverse-sequential-diagram A) n = refl-htpy

equiv-eq-inverse-sequential-diagram :
  {l : Level} (A B : inverse-sequential-diagram l) 
  A  B  equiv-inverse-sequential-diagram A B
equiv-eq-inverse-sequential-diagram A .A refl =
  id-equiv-inverse-sequential-diagram A

is-torsorial-equiv-inverse-sequential-diagram :
  {l : Level} (A : inverse-sequential-diagram l) 
  is-torsorial (equiv-inverse-sequential-diagram A)
is-torsorial-equiv-inverse-sequential-diagram A =
  is-torsorial-Eq-structure
    ( is-torsorial-Eq-Π
      ( λ n  is-torsorial-equiv (family-inverse-sequential-diagram A n)))
    ( family-inverse-sequential-diagram A , λ n  id-equiv)
    ( is-torsorial-Eq-Π
      ( λ n  is-torsorial-htpy (map-inverse-sequential-diagram A n)))

is-equiv-equiv-eq-inverse-sequential-diagram :
  {l : Level} (A B : inverse-sequential-diagram l) 
  is-equiv (equiv-eq-inverse-sequential-diagram A B)
is-equiv-equiv-eq-inverse-sequential-diagram A =
  fundamental-theorem-id
    ( is-torsorial-equiv-inverse-sequential-diagram A)
    ( equiv-eq-inverse-sequential-diagram A)

eq-equiv-inverse-sequential-diagram :
  {l : Level} {A B : inverse-sequential-diagram l} 
  equiv-inverse-sequential-diagram A B  A  B
eq-equiv-inverse-sequential-diagram {A = A} {B} =
  map-inv-is-equiv (is-equiv-equiv-eq-inverse-sequential-diagram A B)

Table of files about sequential limits

The following table lists files that are about sequential limits as a general concept.

ConceptFile
Inverse sequential diagrams of typesfoundation.inverse-sequential-diagrams
Dependent inverse sequential diagrams of typesfoundation.dependent-inverse-sequential-diagrams
Composite maps in inverse sequential diagramsfoundation.composite-maps-in-inverse-sequential-diagrams
Morphisms of inverse sequential diagramsfoundation.morphisms-inverse-sequential-diagrams
Equivalences of inverse sequential diagramsfoundation.equivalences-inverse-sequential-diagrams
Cones over inverse sequential diagramsfoundation.cones-over-inverse-sequential-diagrams
The universal property of sequential limitsfoundation.universal-property-sequential-limits
Sequential limitsfoundation.sequential-limits
Functoriality of sequential limitsfoundation.functoriality-sequential-limits
Transfinite cocomposition of mapsfoundation.transfinite-cocomposition-of-maps

Recent changes