Homotopies of natural transformations in large precategories

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Elisabeth Stenholm.

Created on 2022-03-11.
Last modified on 2023-10-17.

module category-theory.homotopies-natural-transformations-large-precategories where
Imports
open import category-theory.functors-large-precategories
open import category-theory.large-precategories
open import category-theory.natural-transformations-functors-large-precategories

open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

Idea

Two natural transformations α β : F ⇒ G are homotopic if for every object x there is an identification α x = β x.

In UUω the usual identity type is not available. If it were, we would be able to characterize the identity type of natural transformations from F to G as the type of homotopies of natural transformations.

Definitions

Homotopies of natural transformations

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  (C : Large-Precategory αC βC) (D : Large-Precategory αD βD)
  {F : functor-Large-Precategory γF C D}
  {G : functor-Large-Precategory γG C D}
  where

  htpy-natural-transformation-Large-Precategory :
    (σ τ : natural-transformation-Large-Precategory C D F G)  UUω
  htpy-natural-transformation-Large-Precategory σ τ =
    { l : Level} (X : obj-Large-Precategory C l) 
    ( hom-natural-transformation-Large-Precategory σ X) 
    ( hom-natural-transformation-Large-Precategory τ X)

The reflexivity homotopy

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  (C : Large-Precategory αC βC) (D : Large-Precategory αD βD)
  {F : functor-Large-Precategory γF C D}
  {G : functor-Large-Precategory γG C D}
  where

  refl-htpy-natural-transformation-Large-Precategory :
    (α : natural-transformation-Large-Precategory C D F G) 
    htpy-natural-transformation-Large-Precategory C D α α
  refl-htpy-natural-transformation-Large-Precategory α = refl-htpy

Concatenation of homotopies

A homotopy from α to β can be concatenated with a homotopy from β to γ to form a homotopy from α to γ. The concatenation is associative.

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  (C : Large-Precategory αC βC) (D : Large-Precategory αD βD)
  {F : functor-Large-Precategory γF C D}
  {G : functor-Large-Precategory γG C D}
  where

  concat-htpy-natural-transformation-Large-Precategory :
    (σ τ υ : natural-transformation-Large-Precategory C D F G) 
    htpy-natural-transformation-Large-Precategory C D σ τ 
    htpy-natural-transformation-Large-Precategory C D τ υ 
    htpy-natural-transformation-Large-Precategory C D σ υ
  concat-htpy-natural-transformation-Large-Precategory σ τ υ H K = H ∙h K

  associative-concat-htpy-natural-transformation-Large-Precategory :
    (σ τ υ ϕ : natural-transformation-Large-Precategory C D F G)
    (H : htpy-natural-transformation-Large-Precategory C D σ τ)
    (K : htpy-natural-transformation-Large-Precategory C D τ υ)
    (L : htpy-natural-transformation-Large-Precategory C D υ ϕ) 
    {l : Level} (X : obj-Large-Precategory C l) 
    ( concat-htpy-natural-transformation-Large-Precategory σ υ ϕ
      ( concat-htpy-natural-transformation-Large-Precategory σ τ υ H K)
      ( L)
      ( X)) 
    ( concat-htpy-natural-transformation-Large-Precategory σ τ ϕ
      ( H)
      ( concat-htpy-natural-transformation-Large-Precategory τ υ ϕ K L)
      ( X))
  associative-concat-htpy-natural-transformation-Large-Precategory
    σ τ υ ϕ H K L =
    assoc-htpy H K L

Recent changes