Homotopies of natural transformations in large precategories

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Elisabeth Bonnevier.

Created on 2022-03-11.
Last modified on 2023-09-27.

module category-theory.homotopies-natural-transformations-large-precategories where
Imports
open import category-theory.functors-large-precategories
open import category-theory.large-precategories
open import category-theory.natural-transformations-functors-large-precategories

open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

Idea

Two natural transformations α β : F ⇒ G are homotopic if for every object x there is an identification α x = β x.

In UUω the usual identity type is not available. If it were, we would be able to characterize the identity type of natural transformations from F to G as the type of homotopies of natural transformations.

Definitions

Homotopies of natural transformations

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  {C : Large-Precategory αC βC} {D : Large-Precategory αD βD}
  {F : functor-Large-Precategory C D γF}
  {G : functor-Large-Precategory C D γG}
  where

  htpy-natural-transformation-Large-Precategory :
    (α β : natural-transformation-Large-Precategory F G)  UUω
  htpy-natural-transformation-Large-Precategory α β =
    { l : Level} (X : obj-Large-Precategory C l) 
    ( hom-family-natural-transformation-Large-Precategory α X) 
    ( hom-family-natural-transformation-Large-Precategory β X)

The reflexivity homotopy

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  {C : Large-Precategory αC βC} {D : Large-Precategory αD βD}
  {F : functor-Large-Precategory C D γF}
  {G : functor-Large-Precategory C D γG}
  where

  refl-htpy-natural-transformation-Large-Precategory :
    (α : natural-transformation-Large-Precategory F G) 
    htpy-natural-transformation-Large-Precategory α α
  refl-htpy-natural-transformation-Large-Precategory α = refl-htpy

Concatenation of homotopies

A homotopy from α to β can be concatenated with a homotopy from β to γ to form a homotopy from α to γ. The concatenation is associative.

  concat-htpy-natural-transformation-Large-Precategory :
    (α β γ : natural-transformation-Large-Precategory F G) 
    htpy-natural-transformation-Large-Precategory α β 
    htpy-natural-transformation-Large-Precategory β γ 
    htpy-natural-transformation-Large-Precategory α γ
  concat-htpy-natural-transformation-Large-Precategory α β γ H K = H ∙h K

  associative-concat-htpy-natural-transformation-Large-Precategory :
    (α β γ δ : natural-transformation-Large-Precategory F G)
    (H : htpy-natural-transformation-Large-Precategory α β)
    (K : htpy-natural-transformation-Large-Precategory β γ)
    (L : htpy-natural-transformation-Large-Precategory γ δ) 
    {l : Level} (X : obj-Large-Precategory C l) 
    ( concat-htpy-natural-transformation-Large-Precategory α γ δ
      ( concat-htpy-natural-transformation-Large-Precategory α β γ H K)
      ( L)
      ( X)) 
    ( concat-htpy-natural-transformation-Large-Precategory α β δ
      ( H)
      ( concat-htpy-natural-transformation-Large-Precategory β γ δ K L)
      ( X))
  associative-concat-htpy-natural-transformation-Large-Precategory
    α β γ δ H K L =
    assoc-htpy H K L

Recent changes