Pullbacks of subgroups
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2024-04-25.
module group-theory.pullbacks-subgroups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.powersets open import foundation.pullbacks-subtypes open import foundation.universe-levels open import group-theory.conjugation open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.normal-subgroups open import group-theory.pullbacks-subsemigroups open import group-theory.subgroups open import group-theory.subsemigroups open import group-theory.subsets-groups open import order-theory.commuting-squares-of-order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders open import order-theory.similarity-of-order-preserving-maps-large-posets
Idea
Given a group homomorphism f : G → H
into a group H
equipped with a
subgroup K ≤ H
, the pullback pullback f K
of K
along f
is defined by substituting f
in K
. In other words, it is
the subgroup pullback f K
of G
consisting of the elements x : G
such that
f x ∈ K
.
Definitions
Pullbacks of subgroups
module _ {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (K : Subgroup l3 H) where subsemigroup-pullback-Subgroup : Subsemigroup l3 (semigroup-Group G) subsemigroup-pullback-Subgroup = pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) subset-pullback-Subgroup : subset-Group l3 G subset-pullback-Subgroup = subset-pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) is-in-pullback-Subgroup : type-Group G → UU l3 is-in-pullback-Subgroup = is-in-pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) is-closed-under-eq-pullback-Subgroup : {x y : type-Group G} → is-in-pullback-Subgroup x → x = y → is-in-pullback-Subgroup y is-closed-under-eq-pullback-Subgroup = is-closed-under-eq-pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) is-closed-under-eq-pullback-Subgroup' : {x y : type-Group G} → is-in-pullback-Subgroup y → x = y → is-in-pullback-Subgroup x is-closed-under-eq-pullback-Subgroup' = is-closed-under-eq-pullback-Subsemigroup' ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) contains-unit-pullback-Subgroup : contains-unit-subset-Group G subset-pullback-Subgroup contains-unit-pullback-Subgroup = is-closed-under-eq-Subgroup' H K ( contains-unit-Subgroup H K) ( preserves-unit-hom-Group G H f) is-closed-under-multiplication-pullback-Subgroup : is-closed-under-multiplication-subset-Group G subset-pullback-Subgroup is-closed-under-multiplication-pullback-Subgroup = is-closed-under-multiplication-pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H K) is-closed-under-inverses-pullback-Subgroup : is-closed-under-inverses-subset-Group G subset-pullback-Subgroup is-closed-under-inverses-pullback-Subgroup p = is-closed-under-eq-Subgroup' H K ( is-closed-under-inverses-Subgroup H K p) ( preserves-inv-hom-Group G H f) is-subgroup-pullback-Subgroup : is-subgroup-subset-Group G subset-pullback-Subgroup pr1 is-subgroup-pullback-Subgroup = contains-unit-pullback-Subgroup pr1 (pr2 is-subgroup-pullback-Subgroup) = is-closed-under-multiplication-pullback-Subgroup pr2 (pr2 is-subgroup-pullback-Subgroup) = is-closed-under-inverses-pullback-Subgroup pullback-Subgroup : Subgroup l3 G pr1 pullback-Subgroup = subset-pullback-Subgroup pr2 pullback-Subgroup = is-subgroup-pullback-Subgroup
The order preserving map pullback-Subgroup
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-order-pullback-Subgroup : {l3 l4 : Level} (S : Subgroup l3 H) (T : Subgroup l4 H) → leq-Subgroup H S T → leq-Subgroup G (pullback-Subgroup G H f S) (pullback-Subgroup G H f T) preserves-order-pullback-Subgroup S T = preserves-order-pullback-Subsemigroup ( semigroup-Group G) ( semigroup-Group H) ( f) ( subsemigroup-Subgroup H S) ( subsemigroup-Subgroup H T) pullback-subgroup-hom-large-poset-hom-Group : hom-Large-Poset (λ l → l) (Subgroup-Large-Poset H) (Subgroup-Large-Poset G) map-hom-Large-Preorder pullback-subgroup-hom-large-poset-hom-Group = pullback-Subgroup G H f preserves-order-hom-Large-Preorder pullback-subgroup-hom-large-poset-hom-Group = preserves-order-pullback-Subgroup
Properties
The pullback operation commutes with the underlying subtype operation
The square
pullback f
Subgroup H ----------------> Subgroup G
| |
K ↦ UK | | K ↦ UK
| |
∨ ∨
subset-Group H ------------> subset-Group G
pullback f
of order preserving maps commutes by reflexivity.
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where coherence-square-pullback-subset-Subgroup : coherence-square-hom-Large-Poset ( Subgroup-Large-Poset H) ( powerset-Large-Poset (type-Group H)) ( Subgroup-Large-Poset G) ( powerset-Large-Poset (type-Group G)) ( pullback-subgroup-hom-large-poset-hom-Group G H f) ( subset-subgroup-hom-large-poset-Group H) ( subset-subgroup-hom-large-poset-Group G) ( pullback-subtype-hom-Large-Poset (map-hom-Group G H f)) coherence-square-pullback-subset-Subgroup = refl-sim-hom-Large-Poset ( Subgroup-Large-Poset H) ( powerset-Large-Poset (type-Group G)) ( comp-hom-Large-Poset ( Subgroup-Large-Poset H) ( Subgroup-Large-Poset G) ( powerset-Large-Poset (type-Group G)) ( subset-subgroup-hom-large-poset-Group G) ( pullback-subgroup-hom-large-poset-hom-Group G H f))
Pullbacks of normal subgroups are normal
module _ {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (N : Normal-Subgroup l3 H) where subgroup-pullback-Normal-Subgroup : Subgroup l3 G subgroup-pullback-Normal-Subgroup = pullback-Subgroup G H f (subgroup-Normal-Subgroup H N) is-normal-pullback-Normal-Subgroup : is-normal-Subgroup G subgroup-pullback-Normal-Subgroup is-normal-pullback-Normal-Subgroup x (y , n) = is-closed-under-eq-Normal-Subgroup' H N ( is-normal-Normal-Subgroup H N ( map-hom-Group G H f x) ( map-hom-Group G H f y) ( n)) ( preserves-conjugation-hom-Group G H f) pullback-Normal-Subgroup : Normal-Subgroup l3 G pr1 pullback-Normal-Subgroup = subgroup-pullback-Normal-Subgroup pr2 pullback-Normal-Subgroup = is-normal-pullback-Normal-Subgroup
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-24. Egbert Rijke. Abelianization (#877).