Infinite cyclic types
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-02.
Last modified on 2024-01-17.
module synthetic-homotopy-theory.infinite-cyclic-types where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.integers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import structured-types.equivalences-types-equipped-with-endomorphisms open import structured-types.initial-pointed-type-equipped-with-automorphism open import structured-types.mere-equivalences-types-equipped-with-endomorphisms open import structured-types.pointed-types open import structured-types.pointed-types-equipped-with-automorphisms open import structured-types.types-equipped-with-endomorphisms open import synthetic-homotopy-theory.loop-spaces open import univalent-combinatorics.cyclic-finite-types
Definitions
Infinite-Cyclic-Type : (l : Level) → UU (lsuc l) Infinite-Cyclic-Type l = Cyclic-Type l zero-ℕ ℤ-Infinite-Cyclic-Type : Infinite-Cyclic-Type lzero ℤ-Infinite-Cyclic-Type = ℤ-Mod-Cyclic-Type zero-ℕ Infinite-Cyclic-Type-Pointed-Type : Pointed-Type (lsuc lzero) Infinite-Cyclic-Type-Pointed-Type = Cyclic-Type-Pointed-Type zero-ℕ module _ {l : Level} (X : Infinite-Cyclic-Type l) where endo-Infinite-Cyclic-Type : Type-With-Endomorphism l endo-Infinite-Cyclic-Type = endo-Cyclic-Type zero-ℕ X type-Infinite-Cyclic-Type : UU l type-Infinite-Cyclic-Type = type-Cyclic-Type zero-ℕ X endomorphism-Infinite-Cyclic-Type : type-Infinite-Cyclic-Type → type-Infinite-Cyclic-Type endomorphism-Infinite-Cyclic-Type = endomorphism-Cyclic-Type zero-ℕ X mere-equiv-ℤ-Infinite-Cyclic-Type : mere-equiv-Type-With-Endomorphism ( ℤ-Type-With-Endomorphism) ( endo-Infinite-Cyclic-Type) mere-equiv-ℤ-Infinite-Cyclic-Type = pr2 X module _ (l : Level) where point-Infinite-Cyclic-Type : Infinite-Cyclic-Type l pr1 (pr1 point-Infinite-Cyclic-Type) = raise l ℤ pr2 (pr1 point-Infinite-Cyclic-Type) = (map-raise ∘ succ-ℤ) ∘ map-inv-raise pr2 point-Infinite-Cyclic-Type = unit-trunc-Prop (pair (compute-raise l ℤ) refl-htpy) Infinite-Cyclic-Type-Pointed-Type-Level : Pointed-Type (lsuc l) pr1 Infinite-Cyclic-Type-Pointed-Type-Level = Infinite-Cyclic-Type l pr2 Infinite-Cyclic-Type-Pointed-Type-Level = point-Infinite-Cyclic-Type module _ {l1 : Level} (X : Infinite-Cyclic-Type l1) where equiv-Infinite-Cyclic-Type : {l2 : Level} → Infinite-Cyclic-Type l2 → UU (l1 ⊔ l2) equiv-Infinite-Cyclic-Type = equiv-Cyclic-Type zero-ℕ X id-equiv-Infinite-Cyclic-Type : equiv-Infinite-Cyclic-Type X id-equiv-Infinite-Cyclic-Type = id-equiv-Cyclic-Type zero-ℕ X equiv-eq-Infinite-Cyclic-Type : (Y : Infinite-Cyclic-Type l1) → Id X Y → equiv-Infinite-Cyclic-Type Y equiv-eq-Infinite-Cyclic-Type = equiv-eq-Cyclic-Type zero-ℕ X is-torsorial-equiv-Infinite-Cyclic-Type : is-torsorial equiv-Infinite-Cyclic-Type is-torsorial-equiv-Infinite-Cyclic-Type = is-torsorial-equiv-Cyclic-Type zero-ℕ X is-equiv-equiv-eq-Infinite-Cyclic-Type : (Y : Infinite-Cyclic-Type l1) → is-equiv (equiv-eq-Infinite-Cyclic-Type Y) is-equiv-equiv-eq-Infinite-Cyclic-Type = is-equiv-equiv-eq-Cyclic-Type zero-ℕ X extensionality-Infinite-Cyclic-Type : (Y : Infinite-Cyclic-Type l1) → Id X Y ≃ equiv-Infinite-Cyclic-Type Y extensionality-Infinite-Cyclic-Type = extensionality-Cyclic-Type zero-ℕ X module _ where map-left-factor-compute-Ω-Infinite-Cyclic-Type : equiv-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type → ℤ map-left-factor-compute-Ω-Infinite-Cyclic-Type e = map-equiv-Type-With-Endomorphism ( ℤ-Type-With-Endomorphism) ( ℤ-Type-With-Endomorphism) ( e) ( zero-ℤ) abstract is-equiv-map-left-factor-compute-Ω-Infinite-Cyclic-Type : is-equiv map-left-factor-compute-Ω-Infinite-Cyclic-Type is-equiv-map-left-factor-compute-Ω-Infinite-Cyclic-Type = is-equiv-is-contr-map ( λ x → is-contr-equiv ( hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut) ( ( right-unit-law-Σ-is-contr { B = λ f → is-equiv (pr1 f)} ( λ f → is-proof-irrelevant-is-prop ( is-property-is-equiv (pr1 f)) ( is-equiv-htpy id ( htpy-eq ( ap ( pr1) { x = f} { y = pair id (pair refl refl-htpy)} ( eq-is-contr ( is-initial-ℤ-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut)))) ( is-equiv-id)))) ∘e ( ( equiv-right-swap-Σ) ∘e ( ( associative-Σ ( ℤ ≃ ℤ) ( λ e → Id (map-equiv e zero-ℤ) zero-ℤ) ( λ e → ( map-equiv (pr1 e) ∘ succ-ℤ) ~ ( succ-ℤ ∘ map-equiv (pr1 e)))) ∘e ( ( equiv-right-swap-Σ) ∘e ( equiv-Σ ( λ e → Id (map-equiv (pr1 e) zero-ℤ) zero-ℤ) ( equiv-Σ ( λ e → (map-equiv e ∘ succ-ℤ) ~ (succ-ℤ ∘ map-equiv e)) ( equiv-postcomp-equiv (equiv-left-add-ℤ (neg-ℤ x)) ℤ) ( λ e → equiv-Π-equiv-family ( λ k → ( equiv-concat' ( (neg-ℤ x) +ℤ (map-equiv e (succ-ℤ k))) ( right-successor-law-add-ℤ ( neg-ℤ x) ( map-equiv e k))) ∘e ( equiv-ap ( equiv-left-add-ℤ (neg-ℤ x)) ( map-equiv e (succ-ℤ k)) ( succ-ℤ (map-equiv e k)))))) ( λ e → ( equiv-concat' ( (neg-ℤ x) +ℤ (map-equiv (pr1 e) zero-ℤ)) ( left-inverse-law-add-ℤ x)) ∘e ( equiv-ap ( equiv-left-add-ℤ (neg-ℤ x)) ( map-equiv (pr1 e) zero-ℤ) ( x)))))))) ( is-initial-ℤ-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut)) equiv-left-factor-compute-Ω-Infinite-Cyclic-Type : equiv-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type ≃ ℤ pr1 equiv-left-factor-compute-Ω-Infinite-Cyclic-Type = map-left-factor-compute-Ω-Infinite-Cyclic-Type pr2 equiv-left-factor-compute-Ω-Infinite-Cyclic-Type = is-equiv-map-left-factor-compute-Ω-Infinite-Cyclic-Type compute-Ω-Infinite-Cyclic-Type : type-Ω (Infinite-Cyclic-Type-Pointed-Type) ≃ ℤ compute-Ω-Infinite-Cyclic-Type = ( equiv-left-factor-compute-Ω-Infinite-Cyclic-Type) ∘e ( extensionality-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type ℤ-Infinite-Cyclic-Type)
See also
Table of files related to cyclic types, groups, and rings
Recent changes
- 2024-01-17. Egbert Rijke. Reformatting commented blocks of code (#1004).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).