Pointwise extensions of families of globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.pointwise-extensions-families-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.dependent-globular-types open import globular-types.globular-equivalences open import globular-types.globular-types open import globular-types.points-globular-types
Idea
Consider a family of globular types
H : G₀ → Globular-Type
indexed by the 0-cells of a globular type G
and
consider a dependent globular type
K
over G
. We say that K
is a
pointwise extension¶
of H
if it comes equipped with a family of
globular equivalences
ev-point K x ≃ H x₀
indexed by the points of G
.
Definitions
The predicate of being a pointwise extension of a family of globular types
module _ {l1 l2 l3 l4 l5 l6 : Level} {G : Globular-Type l1 l2} (H : 0-cell-Globular-Type G → Globular-Type l3 l4) (K : Dependent-Globular-Type l5 l6 G) where is-pointwise-extension-family-of-globular-types-Dependent-Globular-Type : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) is-pointwise-extension-family-of-globular-types-Dependent-Globular-Type = (x : point-Globular-Type G) → globular-equiv ( ev-point-Dependent-Globular-Type K x) ( H (0-cell-point-Globular-Type x))
The type of pointwise extensions of a family of globular types
module _ {l1 l2 l3 l4 : Level} (l5 l6 : Level) (G : Globular-Type l1 l2) (H : 0-cell-Globular-Type G → Globular-Type l3 l4) where pointwise-extension-family-of-globular-types : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5 ⊔ lsuc l6) pointwise-extension-family-of-globular-types = Σ ( Dependent-Globular-Type l5 l6 G) ( is-pointwise-extension-family-of-globular-types-Dependent-Globular-Type H)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).