The dihedral group construction
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-08-04.
Last modified on 2024-02-06.
module group-theory.dihedral-group-construction where
Imports
open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equality-coproduct-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups
Idea
When A
is an abelian group, we can put a group structure on the disjoint union
A+A
, which specializes to the dihedral groups when we take A := ℤ/k
.
Definitions
module _ {l : Level} (A : Ab l) where set-dihedral-group-Ab : Set l set-dihedral-group-Ab = coproduct-Set (set-Ab A) (set-Ab A) type-dihedral-group-Ab : UU l type-dihedral-group-Ab = type-Set set-dihedral-group-Ab is-set-type-dihedral-group-Ab : is-set type-dihedral-group-Ab is-set-type-dihedral-group-Ab = is-set-type-Set set-dihedral-group-Ab unit-dihedral-group-Ab : type-dihedral-group-Ab unit-dihedral-group-Ab = inl (zero-Ab A) mul-dihedral-group-Ab : (x y : type-dihedral-group-Ab) → type-dihedral-group-Ab mul-dihedral-group-Ab (inl x) (inl y) = inl (add-Ab A x y) mul-dihedral-group-Ab (inl x) (inr y) = inr (add-Ab A (neg-Ab A x) y) mul-dihedral-group-Ab (inr x) (inl y) = inr (add-Ab A x y) mul-dihedral-group-Ab (inr x) (inr y) = inl (add-Ab A (neg-Ab A x) y) inv-dihedral-group-Ab : type-dihedral-group-Ab → type-dihedral-group-Ab inv-dihedral-group-Ab (inl x) = inl (neg-Ab A x) inv-dihedral-group-Ab (inr x) = inr x associative-mul-dihedral-group-Ab : (x y z : type-dihedral-group-Ab) → (mul-dihedral-group-Ab (mul-dihedral-group-Ab x y) z) = (mul-dihedral-group-Ab x (mul-dihedral-group-Ab y z)) associative-mul-dihedral-group-Ab (inl x) (inl y) (inl z) = ap inl (associative-add-Ab A x y z) associative-mul-dihedral-group-Ab (inl x) (inl y) (inr z) = ap ( inr) ( ( ap (add-Ab' A z) (distributive-neg-add-Ab A x y)) ∙ ( associative-add-Ab A (neg-Ab A x) (neg-Ab A y) z)) associative-mul-dihedral-group-Ab (inl x) (inr y) (inl z) = ap inr (associative-add-Ab A (neg-Ab A x) y z) associative-mul-dihedral-group-Ab (inl x) (inr y) (inr z) = ap ( inl) ( ( ap ( add-Ab' A z) ( ( distributive-neg-add-Ab A (neg-Ab A x) y) ∙ ( ap (add-Ab' A (neg-Ab A y)) (neg-neg-Ab A x)))) ∙ ( associative-add-Ab A x (neg-Ab A y) z)) associative-mul-dihedral-group-Ab (inr x) (inl y) (inl z) = ap inr (associative-add-Ab A x y z) associative-mul-dihedral-group-Ab (inr x) (inl y) (inr z) = ap ( inl) ( ( ap (add-Ab' A z) (distributive-neg-add-Ab A x y)) ∙ ( associative-add-Ab A (neg-Ab A x) (neg-Ab A y) z)) associative-mul-dihedral-group-Ab (inr x) (inr y) (inl z) = ap inl (associative-add-Ab A (neg-Ab A x) y z) associative-mul-dihedral-group-Ab (inr x) (inr y) (inr z) = ap ( inr) ( ( ap ( add-Ab' A z) ( ( distributive-neg-add-Ab A (neg-Ab A x) y) ∙ ( ap (add-Ab' A (neg-Ab A y)) (neg-neg-Ab A x)))) ∙ ( associative-add-Ab A x (neg-Ab A y) z)) left-unit-law-mul-dihedral-group-Ab : (x : type-dihedral-group-Ab) → (mul-dihedral-group-Ab unit-dihedral-group-Ab x) = x left-unit-law-mul-dihedral-group-Ab (inl x) = ap inl (left-unit-law-add-Ab A x) left-unit-law-mul-dihedral-group-Ab (inr x) = ap inr (ap (add-Ab' A x) (neg-zero-Ab A) ∙ left-unit-law-add-Ab A x) right-unit-law-mul-dihedral-group-Ab : (x : type-dihedral-group-Ab) → (mul-dihedral-group-Ab x unit-dihedral-group-Ab) = x right-unit-law-mul-dihedral-group-Ab (inl x) = ap inl (right-unit-law-add-Ab A x) right-unit-law-mul-dihedral-group-Ab (inr x) = ap inr (right-unit-law-add-Ab A x) left-inverse-law-mul-dihedral-group-Ab : (x : type-dihedral-group-Ab) → ( mul-dihedral-group-Ab (inv-dihedral-group-Ab x) x) = ( unit-dihedral-group-Ab) left-inverse-law-mul-dihedral-group-Ab (inl x) = ap inl (left-inverse-law-add-Ab A x) left-inverse-law-mul-dihedral-group-Ab (inr x) = ap inl (left-inverse-law-add-Ab A x) right-inverse-law-mul-dihedral-group-Ab : (x : type-dihedral-group-Ab) → ( mul-dihedral-group-Ab x (inv-dihedral-group-Ab x)) = ( unit-dihedral-group-Ab) right-inverse-law-mul-dihedral-group-Ab (inl x) = ap inl (right-inverse-law-add-Ab A x) right-inverse-law-mul-dihedral-group-Ab (inr x) = ap inl (left-inverse-law-add-Ab A x) semigroup-dihedral-group-Ab : Semigroup l pr1 semigroup-dihedral-group-Ab = set-dihedral-group-Ab pr1 (pr2 semigroup-dihedral-group-Ab) = mul-dihedral-group-Ab pr2 (pr2 semigroup-dihedral-group-Ab) = associative-mul-dihedral-group-Ab monoid-dihedral-group-Ab : Monoid l pr1 monoid-dihedral-group-Ab = semigroup-dihedral-group-Ab pr1 (pr2 monoid-dihedral-group-Ab) = unit-dihedral-group-Ab pr1 (pr2 (pr2 monoid-dihedral-group-Ab)) = left-unit-law-mul-dihedral-group-Ab pr2 (pr2 (pr2 monoid-dihedral-group-Ab)) = right-unit-law-mul-dihedral-group-Ab dihedral-group-Ab : Group l pr1 dihedral-group-Ab = semigroup-dihedral-group-Ab pr1 (pr1 (pr2 dihedral-group-Ab)) = unit-dihedral-group-Ab pr1 (pr2 (pr1 (pr2 dihedral-group-Ab))) = left-unit-law-mul-dihedral-group-Ab pr2 (pr2 (pr1 (pr2 dihedral-group-Ab))) = right-unit-law-mul-dihedral-group-Ab pr1 (pr2 (pr2 dihedral-group-Ab)) = inv-dihedral-group-Ab pr1 (pr2 (pr2 (pr2 dihedral-group-Ab))) = left-inverse-law-mul-dihedral-group-Ab pr2 (pr2 (pr2 (pr2 dihedral-group-Ab))) = right-inverse-law-mul-dihedral-group-Ab
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).