Apartness in located metric spaces

Content created by Louis Wasserman.

Created on 2025-11-11.
Last modified on 2025-11-11.

module metric-spaces.apartness-located-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.strict-inequality-positive-rational-numbers

open import foundation.apartness-relations
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.disjunction
open import foundation.empty-types
open import foundation.existential-quantification
open import foundation.negation
open import foundation.propositional-truncations
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import logic.functoriality-existential-quantification

open import metric-spaces.located-metric-spaces

Idea

A located metric space M induces an apartness relation # such that x # y if there exists an ε : ℚ⁺ such that x and y are not in an ε-neighborhood of each other.

Definition

module _
  {l1 l2 : Level} (M : Located-Metric-Space l1 l2)
  where

  apart-prop-Located-Metric-Space :
    Relation-Prop l2 (type-Located-Metric-Space M)
  apart-prop-Located-Metric-Space x y =
     ℚ⁺  ε  ¬' neighborhood-prop-Located-Metric-Space M ε x y)

  apart-Located-Metric-Space : Relation l2 (type-Located-Metric-Space M)
  apart-Located-Metric-Space =
    type-Relation-Prop apart-prop-Located-Metric-Space

Properties

The apartness relation of a located metric space is antireflexive

module _
  {l1 l2 : Level} (M : Located-Metric-Space l1 l2)
  where

  abstract
    is-antireflexive-apart-Located-Metric-Space :
      is-antireflexive (apart-prop-Located-Metric-Space M)
    is-antireflexive-apart-Located-Metric-Space x =
      elim-exists
        ( empty-Prop)
        ( λ ε ¬Nεxx  ¬Nεxx (refl-neighborhood-Located-Metric-Space M ε x))

The apartness relation of a located metric space is symmetric

module _
  {l1 l2 : Level} (M : Located-Metric-Space l1 l2)
  where

  abstract
    is-symmetric-apart-Located-Metric-Space :
      is-symmetric (apart-Located-Metric-Space M)
    is-symmetric-apart-Located-Metric-Space x y =
      map-tot-exists
        ( λ ε ¬Nεxy Nεyx 
          ¬Nεxy (symmetric-neighborhood-Located-Metric-Space M ε y x Nεyx))

The apartness relation of a located metric space is cotransitive

module _
  {l1 l2 : Level} (M : Located-Metric-Space l1 l2)
  where

  abstract
    is-cotransitive-apart-Located-Metric-Space :
      is-cotransitive (apart-prop-Located-Metric-Space M)
    is-cotransitive-apart-Located-Metric-Space x y z x#y =
      let
        motive =
          ( apart-prop-Located-Metric-Space M x z) 
          ( apart-prop-Located-Metric-Space M y z)
        open do-syntax-trunc-Prop motive
      in do
        (dxy , ¬Ndxy)  x#y
        let (δ , ε , δ+ε=dxy) = split-ℚ⁺ dxy
        elim-disjunction
          ( motive)
          ( λ ¬Nδ'xz 
            inl-disjunction (intro-exists (mediant-zero-ℚ⁺ δ) ¬Nδ'xz))
          ( λ Nδxz 
            elim-disjunction
              ( motive)
              ( λ ¬Nε'yz 
                inr-disjunction (intro-exists (mediant-zero-ℚ⁺ ε) ¬Nε'yz))
              ( λ Nεyz 
                ex-falso
                  ( ¬Ndxy
                    ( tr
                      ( λ d  neighborhood-Located-Metric-Space M d x y)
                      ( δ+ε=dxy)
                      ( triangular-neighborhood-Located-Metric-Space M
                        ( x)
                        ( z)
                        ( y)
                        ( δ)
                        ( ε)
                        ( symmetric-neighborhood-Located-Metric-Space M
                          ( ε)
                          ( y)
                          ( z)
                          ( Nεyz))
                        ( Nδxz)))))
              ( is-located-Located-Metric-Space M
                ( y)
                ( z)
                ( mediant-zero-ℚ⁺ ε)
                ( ε)
                ( le-mediant-zero-ℚ⁺ ε)))
          ( is-located-Located-Metric-Space M
            ( x)
            ( z)
            ( mediant-zero-ℚ⁺ δ)
            ( δ)
            ( le-mediant-zero-ℚ⁺ δ))

The apartness relation on located metric spaces is an apartness relation

module _
  {l1 l2 : Level} (M : Located-Metric-Space l1 l2)
  where

  is-apartness-relation-apart-Located-Metric-Space :
    is-apartness-relation (apart-prop-Located-Metric-Space M)
  is-apartness-relation-apart-Located-Metric-Space =
    ( is-antireflexive-apart-Located-Metric-Space M ,
      is-symmetric-apart-Located-Metric-Space M ,
      is-cotransitive-apart-Located-Metric-Space M)

  apartness-relation-Located-Metric-Space :
    Apartness-Relation l2 (type-Located-Metric-Space M)
  apartness-relation-Located-Metric-Space =
    ( apart-prop-Located-Metric-Space M ,
      is-apartness-relation-apart-Located-Metric-Space)

Recent changes