Apartness in located metric spaces
Content created by Louis Wasserman.
Created on 2025-11-11.
Last modified on 2025-11-11.
module metric-spaces.apartness-located-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-positive-rational-numbers open import foundation.apartness-relations open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.existential-quantification open import foundation.negation open import foundation.propositional-truncations open import foundation.transport-along-identifications open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.located-metric-spaces
Idea
A located metric space M induces an
apartness relation # such that x # y if
there exists an ε : ℚ⁺ such that
x and y are not in an ε-neighborhood of each
other.
Definition
module _ {l1 l2 : Level} (M : Located-Metric-Space l1 l2) where apart-prop-Located-Metric-Space : Relation-Prop l2 (type-Located-Metric-Space M) apart-prop-Located-Metric-Space x y = ∃ ℚ⁺ (λ ε → ¬' neighborhood-prop-Located-Metric-Space M ε x y) apart-Located-Metric-Space : Relation l2 (type-Located-Metric-Space M) apart-Located-Metric-Space = type-Relation-Prop apart-prop-Located-Metric-Space
Properties
The apartness relation of a located metric space is antireflexive
module _ {l1 l2 : Level} (M : Located-Metric-Space l1 l2) where abstract is-antireflexive-apart-Located-Metric-Space : is-antireflexive (apart-prop-Located-Metric-Space M) is-antireflexive-apart-Located-Metric-Space x = elim-exists ( empty-Prop) ( λ ε ¬Nεxx → ¬Nεxx (refl-neighborhood-Located-Metric-Space M ε x))
The apartness relation of a located metric space is symmetric
module _ {l1 l2 : Level} (M : Located-Metric-Space l1 l2) where abstract is-symmetric-apart-Located-Metric-Space : is-symmetric (apart-Located-Metric-Space M) is-symmetric-apart-Located-Metric-Space x y = map-tot-exists ( λ ε ¬Nεxy Nεyx → ¬Nεxy (symmetric-neighborhood-Located-Metric-Space M ε y x Nεyx))
The apartness relation of a located metric space is cotransitive
module _ {l1 l2 : Level} (M : Located-Metric-Space l1 l2) where abstract is-cotransitive-apart-Located-Metric-Space : is-cotransitive (apart-prop-Located-Metric-Space M) is-cotransitive-apart-Located-Metric-Space x y z x#y = let motive = ( apart-prop-Located-Metric-Space M x z) ∨ ( apart-prop-Located-Metric-Space M y z) open do-syntax-trunc-Prop motive in do (dxy , ¬Ndxy) ← x#y let (δ , ε , δ+ε=dxy) = split-ℚ⁺ dxy elim-disjunction ( motive) ( λ ¬Nδ'xz → inl-disjunction (intro-exists (mediant-zero-ℚ⁺ δ) ¬Nδ'xz)) ( λ Nδxz → elim-disjunction ( motive) ( λ ¬Nε'yz → inr-disjunction (intro-exists (mediant-zero-ℚ⁺ ε) ¬Nε'yz)) ( λ Nεyz → ex-falso ( ¬Ndxy ( tr ( λ d → neighborhood-Located-Metric-Space M d x y) ( δ+ε=dxy) ( triangular-neighborhood-Located-Metric-Space M ( x) ( z) ( y) ( δ) ( ε) ( symmetric-neighborhood-Located-Metric-Space M ( ε) ( y) ( z) ( Nεyz)) ( Nδxz))))) ( is-located-Located-Metric-Space M ( y) ( z) ( mediant-zero-ℚ⁺ ε) ( ε) ( le-mediant-zero-ℚ⁺ ε))) ( is-located-Located-Metric-Space M ( x) ( z) ( mediant-zero-ℚ⁺ δ) ( δ) ( le-mediant-zero-ℚ⁺ δ))
The apartness relation on located metric spaces is an apartness relation
module _ {l1 l2 : Level} (M : Located-Metric-Space l1 l2) where is-apartness-relation-apart-Located-Metric-Space : is-apartness-relation (apart-prop-Located-Metric-Space M) is-apartness-relation-apart-Located-Metric-Space = ( is-antireflexive-apart-Located-Metric-Space M , is-symmetric-apart-Located-Metric-Space M , is-cotransitive-apart-Located-Metric-Space M) apartness-relation-Located-Metric-Space : Apartness-Relation l2 (type-Located-Metric-Space M) apartness-relation-Located-Metric-Space = ( apart-prop-Located-Metric-Space M , is-apartness-relation-apart-Located-Metric-Space)
Recent changes
- 2025-11-11. Louis Wasserman. Apartness in located metric spaces (#1678).