The precategory of finite total orders
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-16.
Last modified on 2023-10-20.
module order-theory.precategory-of-finite-total-orders where
Imports
open import category-theory.full-large-subprecategories open import category-theory.large-precategories open import category-theory.precategories open import foundation.universe-levels open import order-theory.finite-total-orders open import order-theory.precategory-of-posets
Idea
The (large) precategory of finite total orders consists of finite total orders and order preserving maps and is exhibited as a full subprecategory of the precategory of posets.
Definitions
The large precategory of finite total orders
parametric-Total-Order-𝔽-Full-Large-Subprecategory : (α β : Level → Level) → Full-Large-Subprecategory ( λ l → α l ⊔ β l) ( parametric-Poset-Large-Precategory α β) parametric-Total-Order-𝔽-Full-Large-Subprecategory α β = is-finite-total-order-Poset-Prop Total-Order-𝔽-Large-Precategory : Large-Precategory lsuc (_⊔_) Total-Order-𝔽-Large-Precategory = large-precategory-Full-Large-Subprecategory ( Poset-Large-Precategory) ( parametric-Total-Order-𝔽-Full-Large-Subprecategory (λ l → l) (λ l → l))
The precategory of finite total orders of universe level l
Total-Order-𝔽-Precategory : (l : Level) → Precategory (lsuc l) l Total-Order-𝔽-Precategory = precategory-Large-Precategory Total-Order-𝔽-Large-Precategory
Recent changes
- 2023-10-20. Fredrik Bakke and Egbert Rijke. Small subcategories (#861).
- 2023-10-16. Fredrik Bakke. The simplex precategory (#845).