Equivalances of dependent sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-06-01.
module synthetic-homotopy-theory.equivalences-dependent-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.torsorial-type-families open import foundation.univalence open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-sequential-diagrams open import synthetic-homotopy-theory.morphisms-dependent-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
Consider two dependent sequential diagrams
b₀ b₁ b₂ c₀ c₁ c₂
B₀ ---> B₁ ---> B₂ ---> ⋯ C₀ ---> C₁ ---> C₂ ---> ⋯
| | | | | |
| | | | | |
↡ ↡ ↡ ↡ ↡ ↡
A₀ ---> A₁ ---> A₂ ---> ⋯ A₀ ---> A₁ ---> A₂ ---> ⋯ .
a₀ a₁ a₂ a₀ a₁ a₂
An equivalence of dependent sequential diagrams¶ between them is a family of fiberwise equivalences
eₙ : (a : Aₙ) → Bₙ a ≃ Cₙ a
equipped with a family of fiberwise homotopies making the squares
eₙ a
Bₙ a -----------------> Cₙ a
| ≃ |
bₙ a | | cₙ a
| |
∨ ≃ ∨
Bₙ₊₁ (aₙ a) ----------> Cₙ₊₁ (aₙ a)
eₙ₊₁ (aₙ a)
Definitions
Equivalences of dependent sequential diagrams
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) (C : dependent-sequential-diagram A l3) where coherence-equiv-dependent-sequential-diagram : ( (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a ≃ family-dependent-sequential-diagram C n a) → UU (l1 ⊔ l2 ⊔ l3) coherence-equiv-dependent-sequential-diagram h = (n : ℕ) (a : family-sequential-diagram A n) → coherence-square-maps ( map-equiv (h n a)) ( map-dependent-sequential-diagram B n a) ( map-dependent-sequential-diagram C n a) ( map-equiv (h (succ-ℕ n) (map-sequential-diagram A n a))) equiv-dependent-sequential-diagram : UU (l1 ⊔ l2 ⊔ l3) equiv-dependent-sequential-diagram = Σ ( (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a ≃ family-dependent-sequential-diagram C n a) ( coherence-equiv-dependent-sequential-diagram)
Components of an equivalence of dependent sequential diagrams
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} {B : dependent-sequential-diagram A l2} (C : dependent-sequential-diagram A l3) (e : equiv-dependent-sequential-diagram B C) where equiv-equiv-dependent-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a ≃ family-dependent-sequential-diagram C n a equiv-equiv-dependent-sequential-diagram = pr1 e map-equiv-dependent-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a → family-dependent-sequential-diagram C n a map-equiv-dependent-sequential-diagram n a = map-equiv (equiv-equiv-dependent-sequential-diagram n a) is-equiv-map-equiv-dependent-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-equiv-dependent-sequential-diagram n a) is-equiv-map-equiv-dependent-sequential-diagram n a = is-equiv-map-equiv (equiv-equiv-dependent-sequential-diagram n a) coh-equiv-dependent-sequential-diagram : coherence-equiv-dependent-sequential-diagram B C ( equiv-equiv-dependent-sequential-diagram) coh-equiv-dependent-sequential-diagram = pr2 e hom-equiv-dependent-sequential-diagram : hom-dependent-sequential-diagram B C pr1 hom-equiv-dependent-sequential-diagram = map-equiv-dependent-sequential-diagram pr2 hom-equiv-dependent-sequential-diagram = coh-equiv-dependent-sequential-diagram
The predicate on morphisms of dependent sequential daigrams of being an equivalence
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} {B : dependent-sequential-diagram A l2} (C : dependent-sequential-diagram A l3) where is-equiv-hom-dependent-sequential-diagram : hom-dependent-sequential-diagram B C → UU (l1 ⊔ l2 ⊔ l3) is-equiv-hom-dependent-sequential-diagram h = (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-hom-dependent-sequential-diagram C h n a) is-equiv-hom-equiv-dependent-sequential-diagram : (e : equiv-dependent-sequential-diagram B C) → is-equiv-hom-dependent-sequential-diagram ( hom-equiv-dependent-sequential-diagram C e) is-equiv-hom-equiv-dependent-sequential-diagram e = is-equiv-map-equiv-dependent-sequential-diagram C e
The identity equivalence of sequential diagrams
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where id-equiv-dependent-sequential-diagram : equiv-dependent-sequential-diagram B B pr1 id-equiv-dependent-sequential-diagram n a = id-equiv pr2 id-equiv-dependent-sequential-diagram n a = refl-htpy
Properties
Morphisms of dependent sequential diagrams which are equivalences are equivalences of dependent sequential diagrams
To construct an equivalence of dependent sequential diagrams e : B ≃ C
, it
suffices to construct a morphism h : B → C
and a proof that the maps hₙ
are
fiberwise equivalences.
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} {B : dependent-sequential-diagram A l2} (C : dependent-sequential-diagram A l3) (h : hom-dependent-sequential-diagram B C) where equiv-hom-dependent-sequential-diagram : is-equiv-hom-dependent-sequential-diagram C h → equiv-dependent-sequential-diagram B C pr1 (equiv-hom-dependent-sequential-diagram is-equiv-map) n a = (map-hom-dependent-sequential-diagram C h n a , is-equiv-map n a) pr2 (equiv-hom-dependent-sequential-diagram is-equiv-map) = coh-hom-dependent-sequential-diagram C h
Characterization of identity types of dependent sequential diagrams
The type of equivalences of dependent sequential diagrams characterizes the identity type of dependent sequential diagrams.
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where equiv-eq-dependent-sequential-diagram : (C : dependent-sequential-diagram A l2) → (B = C) → equiv-dependent-sequential-diagram B C equiv-eq-dependent-sequential-diagram .B refl = id-equiv-dependent-sequential-diagram B abstract is-torsorial-equiv-dependent-sequential-diagram : is-torsorial (equiv-dependent-sequential-diagram {l3 = l2} B) is-torsorial-equiv-dependent-sequential-diagram = is-torsorial-Eq-structure ( is-torsorial-Eq-Π ( λ n → is-torsorial-Eq-Π ( λ a → is-torsorial-equiv ( family-dependent-sequential-diagram B n a)))) ( family-dependent-sequential-diagram B , λ n a → id-equiv) ( is-torsorial-Eq-Π ( λ n → is-torsorial-Eq-Π ( λ a → is-torsorial-htpy (map-dependent-sequential-diagram B n a)))) is-equiv-equiv-eq-dependent-sequential-diagram : (C : dependent-sequential-diagram A l2) → is-equiv (equiv-eq-dependent-sequential-diagram C) is-equiv-equiv-eq-dependent-sequential-diagram = fundamental-theorem-id ( is-torsorial-equiv-dependent-sequential-diagram) ( equiv-eq-dependent-sequential-diagram) extensionality-dependent-sequential-diagram : (C : dependent-sequential-diagram A l2) → (B = C) ≃ equiv-dependent-sequential-diagram B C pr1 (extensionality-dependent-sequential-diagram C) = equiv-eq-dependent-sequential-diagram C pr2 (extensionality-dependent-sequential-diagram C) = is-equiv-equiv-eq-dependent-sequential-diagram C eq-equiv-dependent-sequential-diagram : (C : dependent-sequential-diagram A l2) → equiv-dependent-sequential-diagram B C → (B = C) eq-equiv-dependent-sequential-diagram C = map-inv-equiv (extensionality-dependent-sequential-diagram C)
Recent changes
- 2024-06-01. Vojtěch Štěpančík. Characterize identity types of dependent sequential diagrams (#1149).
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).