Morphisms of spans
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-04-25.
module foundation.morphisms-spans where
Imports
open import foundation.dependent-pair-types open import foundation.spans open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.commuting-squares-of-maps open import foundation-core.commuting-triangles-of-maps open import foundation-core.operations-spans
Idea
A morphism of spans¶ from a
span A <-f- S -g-> B
to a span A <-h- T -k-> B
consists of a map w : S → T
equipped with two
homotopies witnessing that the diagram
S
/ | \
f / | \ h
∨ | ∨
A |w B
∧ | ∧
h \ | / k
\ ∨ /
T
Definitions
Morphisms between spans
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (s : span l3 A B) (t : span l4 A B) where left-coherence-hom-span : (spanning-type-span s → spanning-type-span t) → UU (l1 ⊔ l3) left-coherence-hom-span = coherence-triangle-maps (left-map-span s) (left-map-span t) right-coherence-hom-span : (spanning-type-span s → spanning-type-span t) → UU (l2 ⊔ l3) right-coherence-hom-span = coherence-triangle-maps (right-map-span s) (right-map-span t) coherence-hom-span : (spanning-type-span s → spanning-type-span t) → UU (l1 ⊔ l2 ⊔ l3) coherence-hom-span f = left-coherence-hom-span f × right-coherence-hom-span f hom-span : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-span = Σ (spanning-type-span s → spanning-type-span t) coherence-hom-span module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (s : span l3 A B) (t : span l4 A B) (f : hom-span s t) where map-hom-span : spanning-type-span s → spanning-type-span t map-hom-span = pr1 f left-triangle-hom-span : left-coherence-hom-span s t map-hom-span left-triangle-hom-span = pr1 (pr2 f) right-triangle-hom-span : right-coherence-hom-span s t map-hom-span right-triangle-hom-span = pr2 (pr2 f)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).