Negation
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-03-05.
Last modified on 2024-09-23.
module foundation-core.negation where
Idea
The
Curry–Howard interpretation
of negation in type theory is the interpretation of the proposition P ⇒ ⊥
using propositions as types. Thus, the
negation¶
of a type A
is the type A → empty
.
Definition
infix 25 ¬_ ¬_ : {l : Level} → UU l → UU l ¬ A = A → empty map-neg : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → Q) → (¬ Q → ¬ P) map-neg f nq p = nq (f p)
External links
- Logical negation at Mathswitch
- negation at Lab
- Negation at Wikipedia
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).