Equality of metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.equality-of-metric-spaces where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.universe-levels open import metric-spaces.equality-of-premetric-spaces open import metric-spaces.isometric-equivalences-premetric-spaces open import metric-spaces.metric-spaces open import metric-spaces.premetric-spaces
Idea
Equality of metric spaces is equivalent to equality of their carrier premetric spaces; therefore, isometric equality¶ between metric spaces characterizes their equality, which in turn means that equality is characterized by isometric equivalence between their carrier premetric spaces.
Definitions
Equality of metric spaces is equivalent to equality of their carrier premetric spaces
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-eq-premetric-Metric-Space : (A = B) ≃ (premetric-Metric-Space A = premetric-Metric-Space B) equiv-eq-premetric-Metric-Space = extensionality-type-subtype' is-metric-prop-Premetric-Space A B
Isometric equality of metric spaces
module _ {l1 l2 l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1 l2') where isometric-eq-Metric-Space : UU (lsuc l1 ⊔ l2 ⊔ l2') isometric-eq-Metric-Space = isometric-eq-Premetric-Space (premetric-Metric-Space A) (premetric-Metric-Space B)
Isometric equivalence of metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where isometric-equiv-Metric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') isometric-equiv-Metric-Space = isometric-equiv-Premetric-Space (premetric-Metric-Space A) (premetric-Metric-Space B)
Isometric equivalences between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where isometric-equiv-Metric-Space' : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') isometric-equiv-Metric-Space' = isometric-equiv-Premetric-Space' (premetric-Metric-Space A) (premetric-Metric-Space B)
Properties
Equality of metric spaces is equivalent to isometric equality of their carrier types
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-isometric-eq-eq-Metric-Space : (A = B) ≃ isometric-eq-Metric-Space A B equiv-isometric-eq-eq-Metric-Space = ( equiv-isometric-eq-eq-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B)) ∘e ( equiv-eq-premetric-Metric-Space A B) eq-isometric-eq-Metric-Space : isometric-eq-Metric-Space A B → A = B eq-isometric-eq-Metric-Space = map-inv-equiv equiv-isometric-eq-eq-Metric-Space
Isometric equality is torsorial
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-torsorial-isometric-eq-Metric-Space : is-torsorial (isometric-eq-Metric-Space A) is-torsorial-isometric-eq-Metric-Space = is-contr-equiv' ( Σ (Metric-Space l1 l2) (Id A)) ( equiv-tot (equiv-isometric-eq-eq-Metric-Space A)) ( is-torsorial-Id A)
Equality of metric spaces is equivalent to isometric equivalence of their carrier types
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-isometric-equiv-eq-Metric-Space : (A = B) ≃ isometric-equiv-Metric-Space A B equiv-isometric-equiv-eq-Metric-Space = ( equiv-isometric-equiv-eq-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B)) ∘e ( equiv-eq-premetric-Metric-Space A B) eq-isometric-equiv-Metric-Space : isometric-equiv-Metric-Space A B → A = B eq-isometric-equiv-Metric-Space = map-inv-equiv equiv-isometric-equiv-eq-Metric-Space
Isometric equivalence between metric spaces is torsorial
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-torsorial-isometric-equiv-Metric-Space : is-torsorial (isometric-equiv-Metric-Space A) is-torsorial-isometric-equiv-Metric-Space = is-contr-equiv' ( Σ (Metric-Space l1 l2) (Id A)) ( equiv-tot (equiv-isometric-equiv-eq-Metric-Space A)) ( is-torsorial-Id A)
Equality of metric spaces is equivalent to the existence of isometric equivalence between their carrier types
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-isometric-equiv-eq-Metric-Space' : (A = B) ≃ isometric-equiv-Metric-Space' A B equiv-isometric-equiv-eq-Metric-Space' = ( equiv-isometric-equiv-eq-Premetric-Space' ( premetric-Metric-Space A) ( premetric-Metric-Space B)) ∘e ( equiv-eq-premetric-Metric-Space A B) eq-isometric-equiv-Metric-Space' : isometric-equiv-Metric-Space' A B → A = B eq-isometric-equiv-Metric-Space' = map-inv-equiv equiv-isometric-equiv-eq-Metric-Space'
The existence of invertibe isometries between metric spaces is torsorial
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-torsorial-isometric-equiv-Metric-Space' : is-torsorial (isometric-equiv-Metric-Space' A) is-torsorial-isometric-equiv-Metric-Space' = is-contr-equiv' ( Σ (Metric-Space l1 l2) (Id A)) ( equiv-tot (equiv-isometric-equiv-eq-Metric-Space' A)) ( is-torsorial-Id A)
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).