Commuting squares of identifications

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Tom de Jong.

Created on 2023-02-18.
Last modified on 2024-02-19.

module foundation.commuting-squares-of-identifications where

open import foundation-core.commuting-squares-of-identifications public
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.identity-types

Idea

A square of identifications

           top
       x -------> y
       |          |
  left |          | right
       ∨          ∨
       z -------> w
          bottom

is said to be a commuting square if there is an identification left ∙ bottom = top ∙ right. Such an identification is called a coherence of the square.

Concatenating identifications of edges and coherences of commuting squares of identifications

Consider a commuting square of identifications and an identification of one of the four sides with another identification, as for example in the diagram below:

             top
       a ---------> b
       |           | |
  left |     right |=| right'
       ∨           ∨ ∨
       c ---------> d.
           bottom

Then any identification witnessing that the square commutes can be concatenated with the identification on the side, to obtain a new commuting square of identifications.

Concatenating identifications of the top edge with a coherence of a commuting square of identifications

Consider a commuting diagram of identifications

           top'
         ------->
       x -------> y
       |   top    |
  left |          | right
       ∨          ∨
       z -------> w.
          bottom

with an identification top = top'. Then we get an equivalence

           top                             top'
       x -------> y                    x -------> y
       |          |                    |          |
  left |          | right    ≃    left |          | right
       ∨          ∨                    ∨          ∨
       z -------> w                    z -------> w.
          bottom                          bottom
module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  {top' : x  y} (s : top  top')
  where

  abstract
    is-equiv-concat-top-identification-coherence-square-identifications :
      is-equiv
        ( concat-top-identification-coherence-square-identifications
            top left right bottom s)
    is-equiv-concat-top-identification-coherence-square-identifications =
      is-equiv-is-invertible
        ( inv-concat-top-identification-coherence-square-identifications
            top left right bottom s)
        ( is-section-inv-concat-top-identification-coherence-square-identifications
            top left right bottom s)
        ( is-retraction-inv-concat-top-identification-coherence-square-identifications
            top left right bottom s)

  equiv-concat-top-identification-coherence-square-identifications :
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top' left right bottom
  pr1 equiv-concat-top-identification-coherence-square-identifications =
    concat-top-identification-coherence-square-identifications
      top left right bottom s
  pr2 equiv-concat-top-identification-coherence-square-identifications =
    is-equiv-concat-top-identification-coherence-square-identifications

Concatenating identifications of the left edge with a coherence of a commuting square of identifications

Consider a commuting diagram of identifications

              top
         x -------> y
        | |         |
  left' | | left    | right
        ∨ ∨         ∨
         z -------> w.
            bottom

with an identification left = left'. Then we get an equivalence

           top                              top
       x -------> y                     x -------> y
       |          |                     |          |
  left |          | right    ≃    left' |          | right
       ∨          ∨                     ∨          ∨
       z -------> w                     z -------> w.
          bottom                           bottom
module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  {left' : x  z} (s : left  left')
  where

  abstract
    is-equiv-concat-left-identification-coherence-square-identifications :
      is-equiv
        ( concat-left-identification-coherence-square-identifications
            top left right bottom s)
    is-equiv-concat-left-identification-coherence-square-identifications =
      is-equiv-is-invertible
        ( inv-concat-left-identification-coherence-square-identifications
            top left right bottom s)
        ( is-section-inv-concat-left-identification-coherence-square-identifications
            top left right bottom s)
        ( is-retraction-inv-concat-left-identification-coherence-square-identifications
            top left right bottom s)

  equiv-concat-left-identification-coherence-square-identifications :
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top left' right bottom
  pr1 equiv-concat-left-identification-coherence-square-identifications =
    concat-left-identification-coherence-square-identifications
        top left right bottom s
  pr2 equiv-concat-left-identification-coherence-square-identifications =
    is-equiv-concat-left-identification-coherence-square-identifications

Concatenating identifications of the right edge with a coherence of a commuting square of identifications

Consider a commuting diagram of identifications

            top
       x -------> y
       |         | |
  left |   right | | right'
       ∨         ∨ ∨
       z -------> w.
          bottom

with an identification right = right'. Then we get an equivalence

           top                             top
       x -------> y                    x -------> y
       |          |                    |          |
  left |          | right    ≃    left |          | right'
       ∨          ∨                    ∨          ∨
       z -------> w                    z -------> w.
          bottom                          bottom
module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  {right' : y  w} (s : right  right')
  where

  abstract
    is-equiv-concat-right-identification-coherence-square-identifications :
      is-equiv
        ( concat-right-identification-coherence-square-identifications
            top left right bottom s)
    is-equiv-concat-right-identification-coherence-square-identifications =
      is-equiv-is-invertible
        ( inv-concat-right-identification-coherence-square-identifications
            top left right bottom s)
        ( is-section-inv-concat-right-identification-coherence-square-identifications
            top left right bottom s)
        ( is-retraction-inv-concat-right-identification-coherence-square-identifications
            top left right bottom s)

  equiv-concat-right-identification-coherence-square-identifications :
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top left right' bottom
  pr1 equiv-concat-right-identification-coherence-square-identifications =
    concat-right-identification-coherence-square-identifications
      top left right bottom s
  pr2 equiv-concat-right-identification-coherence-square-identifications =
    is-equiv-concat-right-identification-coherence-square-identifications

Concatenating identifications of the bottom edge with a coherence of a commuting square of identifications

Consider a commuting diagram of identifications

            top
       x -------> y
       |          |
  left |          | right
       ∨  bottom  ∨
       z -------> w.
         ------->
          bottom'

with an identification bottom = bottom'. Then we get an equivalence

           top                             top
       x -------> y                    x -------> y
       |          |                    |          |
  left |          | right    ≃    left |          | right
       ∨          ∨                    ∨          ∨
       z -------> w                    z -------> w.
          bottom                          bottom'
module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  {bottom' : z  w} (s : bottom  bottom')
  where

  is-equiv-concat-bottom-identification-coherence-square-identifications :
    is-equiv
      ( concat-bottom-identification-coherence-square-identifications
          top left right bottom s)
  is-equiv-concat-bottom-identification-coherence-square-identifications =
    is-equiv-is-invertible
      ( inv-concat-bottom-identification-coherence-square-identifications
          top left right bottom s)
      ( is-section-inv-concat-bottom-identification-coherence-square-identifications
          top left right bottom s)
      ( is-retraction-inv-concat-bottom-identification-coherence-square-identifications
          top left right bottom s)

  equiv-concat-bottom-identification-coherence-square-identifications :
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top left right bottom'
  pr1 equiv-concat-bottom-identification-coherence-square-identifications =
    concat-bottom-identification-coherence-square-identifications
        top left right bottom s
  pr2 equiv-concat-bottom-identification-coherence-square-identifications =
    is-equiv-concat-bottom-identification-coherence-square-identifications

Whiskering and splicing coherences of commuting squares of identifications

Given a commuting square of identifications

           top
       x -------> y
       |          |
  left |          | right
       ∨          ∨
       z -------> w,
          bottom

we may consider four ways of attaching new identifications to it:

  1. Prepending p : u = x to the left gives us a commuting square

                 p ∙ top
               u -------> y
               |          |
      p ∙ left |          | right
               ∨          ∨
               z -------> w.
                  bottom
    

    More precisely, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ ((p ∙ left) ∙ bottom = (p ∙ top) ∙ right).
    
  2. Appending an identification p : w = u to the right gives a commuting square of identifications

                    top
            x ------------> y
            |               |
       left |               | right ∙ p
            ∨               ∨
            z ------------> u.
               bottom ∙ p
    

    More precisely, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ (left ∙ (bottom ∙ p) = top ∙ (right ∙ p)).
    
  3. Splicing an identification p : z = u and its inverse into the middle gives a commuting square of identifications

                       top
               x --------------> y
               |                 |
      left ∙ p |                 | right
               ∨                 ∨
               u --------------> w.
                  p⁻¹ ∙ bottom
    

    More precisely, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ ((left ∙ p) ∙ (p⁻¹ ∙ bottom) = top ∙ right).
    

    Similarly, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ ((left ∙ p⁻¹) ∙ (p ∙ bottom) = top ∙ right).
    
  4. Splicing an identification p : y = u and its inverse into the middle gives a commuting square of identifications

              top ∙ p
           x --------> u
           |           |
      left |           | p⁻¹ ∙ right
           ∨           ∨
           z --------> w.
              bottom
    

    More precisely, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ (left ∙ bottom = (top ∙ p) ∙ (p⁻¹ ∙ right)).
    

    Similarly, we have an equivalence

      (left ∙ bottom = top ∙ right) ≃ (left ∙ bottom = (top ∙ p⁻¹) ∙ (p ∙ right)).
    

These operations are useful in proofs involving path algebra, because taking equiv-right-whisker-concat-coherence-square-identifications as an example, it provides us with two maps: the forward direction states (p ∙ r = q ∙ s) → (p ∙ (r ∙ t)) = q ∙ (s ∙ t)), which allows one to append an identification without needing to reassociate on the right, and the backwards direction conversely allows one to cancel out an identification in parentheses.

Left whiskering coherences of commuting squares of identifications

For any identification p : u = x we obtain an equivalence

           top                                p ∙ top
       x -------> y                         u -------> y
       |          |                         |          |
  left |          | right    ≃     p ∙ left |          | right
       ∨          ∨                         ∨          ∨
       z -------> w                         z -------> w
          bottom                               bottom

of coherences of commuting squares of identifications.

module _
  {l : Level} {A : UU l} {x y z w u : A}
  where

  equiv-left-whisker-concat-coherence-square-identifications :
    (p : u  x)
    (top : x  y) (left : x  z) (right : y  w) (bottom : z  w) 
    coherence-square-identifications top left right bottom 
    coherence-square-identifications (p  top) (p  left) right bottom
  equiv-left-whisker-concat-coherence-square-identifications
    refl top left right bottom =
    id-equiv

Right whiskering coherences of commuting squares of identifications

For any identification p : w = u we obtain an equivalence

           top                                 top
       x -------> y                     x ------------> y
       |          |                     |               |
  left |          | right    ≃     left |               | right ∙ p
       ∨          ∨                     ∨               ∨
       z -------> w                     z ------------> w
          bottom                           bottom ∙ p

of coherences of commuting squares of identifications.

module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  where

  equiv-right-whisker-concat-coherence-square-identifications :
    {u : A} (p : w  u) 
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top left (right  p) (bottom  p)
  equiv-right-whisker-concat-coherence-square-identifications refl =
    ( equiv-concat-bottom-identification-coherence-square-identifications
      ( top)
      ( left)
      ( right  refl)
      ( bottom)
      ( inv right-unit)) ∘e
    ( equiv-concat-right-identification-coherence-square-identifications
      ( top)
      ( left)
      ( right)
      ( bottom)
      ( inv right-unit))

Left splicing coherences of commuting squares of identifications

For any inverse pair of identifications p : y = u and q : u = y equipped with α : inv p = q we obtain an equivalence

           top                                    top
       x -------> y                         x -----------> y
       |          |                         |              |
  left |          | right    ≃     left ∙ p |              | right
       ∨          ∨                         ∨              ∨
       z -------> w                         u -----------> w
          bottom                               q ∙ bottom

of coherences of commuting squares of identifications.

module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  where

  equiv-left-splice-coherence-square-identifications :
    {u : A} (p : z  u) (q : u  z) (α : inv p  q) 
    coherence-square-identifications top left right bottom 
    coherence-square-identifications top (left  p) right (q  bottom)
  equiv-left-splice-coherence-square-identifications refl .refl refl =
    equiv-concat-left-identification-coherence-square-identifications
      ( top)
      ( left)
      ( right)
      ( bottom)
      ( inv right-unit)

Right splicing coherences of commuting squares of identifications

For any inverse pair of identifications p : y = u and q : u = y equipped with α : inv p = q we obtain an equivalence

           top                             top ∙ p
       x -------> y                     x --------> u
       |          |                     |           |
  left |          | right    ≃     left |           | q ∙ right
       ∨          ∨                     ∨           ∨
       z -------> w                     z --------> w
          bottom                           bottom

of coherences of commuting squares of identifications.

module _
  {l : Level} {A : UU l} {x y z w : A}
  (top : x  y) (left : x  z) (right : y  w) (bottom : z  w)
  where

  equiv-right-splice-coherence-square-identifications :
    {u : A} (p : y  u) (q : u  y) (α : inv p  q) 
    coherence-square-identifications top left right bottom 
    coherence-square-identifications (top  p) left (inv p  right) bottom
  equiv-right-splice-coherence-square-identifications refl .refl refl =
    equiv-concat-top-identification-coherence-square-identifications
      ( top)
      ( left)
      ( right)
      ( bottom)
      ( inv right-unit)

Double whiskering of commuting squares of identifications

module _
  {l : Level} {A : UU l} {x y z u v w : A}
  where

  equiv-double-whisker-coherence-square-identifications :
    (p : x  y)
    (top : y  u) (left : y  z) (right : u  v) (bottom : z  v)
    (s : v  w) 
    coherence-square-identifications top left right bottom 
    coherence-square-identifications
      ( p  top)
      ( p  left)
      ( right  s)
      ( bottom  s)
  equiv-double-whisker-coherence-square-identifications
    p top left right bottom q =
    equiv-left-whisker-concat-coherence-square-identifications p top left
      ( right  q)
      ( bottom  q) ∘e
    equiv-right-whisker-concat-coherence-square-identifications
      ( top)
      ( left)
      ( right)
      ( bottom)
      ( q)

Recent changes