Subsets of left modules over commutative rings

Content created by Louis Wasserman.

Created on 2026-01-30.
Last modified on 2026-01-30.

module linear-algebra.subsets-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings

open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import linear-algebra.left-modules-commutative-rings
open import linear-algebra.subsets-left-modules-rings

Idea

A subset of a left module M over a commutative ring R is a subset of the underlying type of M.

Definitions

Subsets of left modules over commutative rings

module _
  {l1 l2 : Level}
  (l3 : Level)
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  where

  subset-left-module-Commutative-Ring : UU (l2  lsuc l3)
  subset-left-module-Commutative-Ring =
    subtype l3 (type-left-module-Commutative-Ring R M)

The condition that a subset is closed under addition

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  (S : subset-left-module-Commutative-Ring l3 R M)
  where

  is-closed-under-addition-prop-subset-left-module-Commutative-Ring :
    Prop (l2  l3)
  is-closed-under-addition-prop-subset-left-module-Commutative-Ring =
    is-closed-under-addition-prop-subset-left-module-Ring
      ( ring-Commutative-Ring R)
      ( M)
      ( S)

  is-closed-under-addition-subset-left-module-Commutative-Ring : UU (l2  l3)
  is-closed-under-addition-subset-left-module-Commutative-Ring =
    type-Prop is-closed-under-addition-prop-subset-left-module-Commutative-Ring

The condition that a subset is closed under scalar multiplication

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  (S : subset-left-module-Commutative-Ring l3 R M)
  where

  is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring :
    Prop (l1  l2  l3)
  is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring =
    is-closed-under-scalar-multiplication-prop-subset-left-module-Ring
      ( ring-Commutative-Ring R)
      ( M)
      ( S)

  is-closed-under-scalar-multiplication-subset-left-module-Commutative-Ring :
    UU (l1  l2  l3)
  is-closed-under-scalar-multiplication-subset-left-module-Commutative-Ring =
    type-Prop
      ( is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring)

The condition that a subset contains zero

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  (S : subset-left-module-Commutative-Ring l3 R M)
  where

  contains-zero-prop-subset-left-module-Commutative-Ring : Prop l3
  contains-zero-prop-subset-left-module-Commutative-Ring =
    contains-zero-prop-subset-left-module-Ring
      ( ring-Commutative-Ring R)
      ( M)
      ( S)

  contains-zero-subset-left-module-Commutative-Ring : UU l3
  contains-zero-subset-left-module-Commutative-Ring =
    type-Prop contains-zero-prop-subset-left-module-Commutative-Ring

Recent changes