Subsets of left modules over commutative rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.subsets-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-commutative-rings open import linear-algebra.subsets-left-modules-rings
Idea
A
subset¶
of a left module M over a
commutative ring R is a
subset of the underlying type of M.
Definitions
Subsets of left modules over commutative rings
module _ {l1 l2 : Level} (l3 : Level) (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) where subset-left-module-Commutative-Ring : UU (l2 ⊔ lsuc l3) subset-left-module-Commutative-Ring = subtype l3 (type-left-module-Commutative-Ring R M)
The condition that a subset is closed under addition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (S : subset-left-module-Commutative-Ring l3 R M) where is-closed-under-addition-prop-subset-left-module-Commutative-Ring : Prop (l2 ⊔ l3) is-closed-under-addition-prop-subset-left-module-Commutative-Ring = is-closed-under-addition-prop-subset-left-module-Ring ( ring-Commutative-Ring R) ( M) ( S) is-closed-under-addition-subset-left-module-Commutative-Ring : UU (l2 ⊔ l3) is-closed-under-addition-subset-left-module-Commutative-Ring = type-Prop is-closed-under-addition-prop-subset-left-module-Commutative-Ring
The condition that a subset is closed under scalar multiplication
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (S : subset-left-module-Commutative-Ring l3 R M) where is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring = is-closed-under-scalar-multiplication-prop-subset-left-module-Ring ( ring-Commutative-Ring R) ( M) ( S) is-closed-under-scalar-multiplication-subset-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) is-closed-under-scalar-multiplication-subset-left-module-Commutative-Ring = type-Prop ( is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring)
The condition that a subset contains zero
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (S : subset-left-module-Commutative-Ring l3 R M) where contains-zero-prop-subset-left-module-Commutative-Ring : Prop l3 contains-zero-prop-subset-left-module-Commutative-Ring = contains-zero-prop-subset-left-module-Ring ( ring-Commutative-Ring R) ( M) ( S) contains-zero-subset-left-module-Commutative-Ring : UU l3 contains-zero-subset-left-module-Commutative-Ring = type-Prop contains-zero-prop-subset-left-module-Commutative-Ring
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).