Equality of real numbers

Content created by Fredrik Bakke.

Created on 2025-11-11.
Last modified on 2025-11-11.

module real-numbers.equality-real-numbers where
Imports
open import foundation.double-negation
open import foundation.double-negation-stable-equality
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.similarity-real-numbers

Idea

We record that equality and similarity of Dedekind real numbers and double negation stable.

Properties

Similarity of Dedekind real numbers is double negation stable

module _
  {l1 l2 : Level} {x :  l1} {y :  l2}
  where abstract

  double-negation-elim-sim-ℝ : ¬¬ (x ~ℝ y)  x ~ℝ y
  double-negation-elim-sim-ℝ H =
    sim-antisymmetric-leq-ℝ x y
      ( double-negation-elim-leq-ℝ x y (map-double-negation leq-sim-ℝ H))
      ( double-negation-elim-leq-ℝ y x (map-double-negation leq-sim-ℝ' H))

Equality of Dedekind real numbers is double negation stable

module _
  {l : Level} {x y :  l}
  where abstract

  double-negation-elim-eq-ℝ : ¬¬ (x  y)  x  y
  double-negation-elim-eq-ℝ H =
    eq-sim-ℝ (double-negation-elim-sim-ℝ (map-double-negation sim-eq-ℝ H))

The Dedekind real numbers form a set

This fact is already demonstrated in real-numbers.dedekind-real-numbers, but we give a second proof using the fact that equality satisfies double negation elimination.

is-set-ℝ' : {l : Level}  is-set ( l)
is-set-ℝ' =
  is-set-has-double-negation-stable-equality  x y  double-negation-elim-eq-ℝ)

Recent changes