Equality of real numbers
Content created by Fredrik Bakke.
Created on 2025-11-11.
Last modified on 2025-11-11.
module real-numbers.equality-real-numbers where
Imports
open import foundation.double-negation open import foundation.double-negation-stable-equality open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.similarity-real-numbers
Idea
We record that equality and similarity of Dedekind real numbers and double negation stable.
Properties
Similarity of Dedekind real numbers is double negation stable
module _ {l1 l2 : Level} {x : ℝ l1} {y : ℝ l2} where abstract double-negation-elim-sim-ℝ : ¬¬ (x ~ℝ y) → x ~ℝ y double-negation-elim-sim-ℝ H = sim-antisymmetric-leq-ℝ x y ( double-negation-elim-leq-ℝ x y (map-double-negation leq-sim-ℝ H)) ( double-negation-elim-leq-ℝ y x (map-double-negation leq-sim-ℝ' H))
Equality of Dedekind real numbers is double negation stable
module _ {l : Level} {x y : ℝ l} where abstract double-negation-elim-eq-ℝ : ¬¬ (x = y) → x = y double-negation-elim-eq-ℝ H = eq-sim-ℝ (double-negation-elim-sim-ℝ (map-double-negation sim-eq-ℝ H))
The Dedekind real numbers form a set
This fact is already demonstrated in
real-numbers.dedekind-real-numbers,
but we give a second proof using the fact that equality satisfies double
negation elimination.
is-set-ℝ' : {l : Level} → is-set (ℝ l) is-set-ℝ' = is-set-has-double-negation-stable-equality (λ x y → double-negation-elim-eq-ℝ)
Recent changes
- 2025-11-11. Fredrik Bakke. Double negation stability of equality on Dedekind real numbers (#1703).