The raise modalities
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-06-08.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.raise-modalities where
Imports
open import foundation.function-types open import foundation.raising-universe-levels open import foundation.universe-levels open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.types-local-at-maps open import orthogonal-factorization-systems.uniquely-eliminating-modalities
Idea
The operations of
raising universe levels are trivially
higher modalities, and
in the case that l1 ⊔ l2 = l1
, we recover the
identity modality.
Definition
operator-raise-modality : (l1 l2 : Level) → operator-modality l1 (l1 ⊔ l2) operator-raise-modality l1 l2 = raise l2 unit-raise-modality : {l1 l2 : Level} → unit-modality (operator-raise-modality l1 l2) unit-raise-modality = map-raise
Properties
The raise modality is a uniquely eliminating modality
is-uniquely-eliminating-modality-raise-modality : {l1 l2 : Level} → is-uniquely-eliminating-modality (unit-raise-modality {l1} {l2}) is-uniquely-eliminating-modality-raise-modality {l1} {l2} P = is-local-dependent-type-is-equiv ( unit-raise-modality) ( is-equiv-map-raise) ( operator-raise-modality l1 l2 ∘ P)
In the case that l1 ⊔ l2 = l1
we recover the identity modality
This remains to be made formal. #739
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-09-10. Fredrik Bakke. Link issues to unfinished sections (#732).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).