Equivalences of span diagrams on families of types
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-04-25.
module foundation.equivalences-span-diagrams-families-of-types where
Imports
open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.equivalences-spans-families-of-types open import foundation.homotopies open import foundation.operations-spans-families-of-types open import foundation.span-diagrams-families-of-types open import foundation.universe-levels
Idea
An
equivalence of span diagrams on families of types¶
from a span (A , s)
of families of
types indexed by a type I
to a span (B , t)
indexed by I
consists of a
family of equivalences
h : Aᵢ ≃ Bᵢ
, and an equivalence e : S ≃ T
equipped with a family of
homotopies witnessing that the square
e
S -----> T
| |
fᵢ | | gᵢ
∨ ∨
Aᵢ ----> Bᵢ
h
commutes for each i : I
.
Definitions
Equivalences of span diagrams on families of types
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} (S : span-diagram-type-family l2 l3 I) (T : span-diagram-type-family l4 l5 I) where equiv-span-diagram-type-family : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) equiv-span-diagram-type-family = Σ ( (i : I) → family-span-diagram-type-family S i ≃ family-span-diagram-type-family T i) ( λ e → equiv-span-type-family ( concat-span-hom-family-of-types ( span-span-diagram-type-family S) ( λ i → map-equiv (e i))) ( span-span-diagram-type-family T)) module _ (e : equiv-span-diagram-type-family) where equiv-family-equiv-span-diagram-type-family : (i : I) → family-span-diagram-type-family S i ≃ family-span-diagram-type-family T i equiv-family-equiv-span-diagram-type-family = pr1 e map-family-equiv-span-diagram-type-family : (i : I) → family-span-diagram-type-family S i → family-span-diagram-type-family T i map-family-equiv-span-diagram-type-family i = map-equiv (equiv-family-equiv-span-diagram-type-family i) equiv-span-equiv-span-diagram-type-family : equiv-span-type-family ( concat-span-hom-family-of-types ( span-span-diagram-type-family S) ( map-family-equiv-span-diagram-type-family)) ( span-span-diagram-type-family T) equiv-span-equiv-span-diagram-type-family = pr2 e spanning-equiv-equiv-span-diagram-type-family : spanning-type-span-diagram-type-family S ≃ spanning-type-span-diagram-type-family T spanning-equiv-equiv-span-diagram-type-family = equiv-equiv-span-type-family ( concat-span-hom-family-of-types ( span-span-diagram-type-family S) ( map-family-equiv-span-diagram-type-family)) ( span-span-diagram-type-family T) ( equiv-span-equiv-span-diagram-type-family) spanning-map-equiv-span-diagram-type-family : spanning-type-span-diagram-type-family S → spanning-type-span-diagram-type-family T spanning-map-equiv-span-diagram-type-family = map-equiv spanning-equiv-equiv-span-diagram-type-family coherence-square-equiv-span-diagram-type-family : (i : I) → coherence-square-maps ( spanning-map-equiv-span-diagram-type-family) ( map-span-diagram-type-family S i) ( map-span-diagram-type-family T i) ( map-family-equiv-span-diagram-type-family i) coherence-square-equiv-span-diagram-type-family = triangle-equiv-span-type-family ( concat-span-hom-family-of-types ( span-span-diagram-type-family S) ( map-family-equiv-span-diagram-type-family)) ( span-span-diagram-type-family T) ( equiv-span-equiv-span-diagram-type-family)
Identity equivalences of spans diagrams on families of types
module _ {l1 l2 l3 : Level} {I : UU l1} {𝒮 : span-diagram-type-family l2 l3 I} where id-equiv-span-diagram-type-family : equiv-span-diagram-type-family 𝒮 𝒮 pr1 id-equiv-span-diagram-type-family i = id-equiv pr1 (pr2 id-equiv-span-diagram-type-family) = id-equiv pr2 (pr2 id-equiv-span-diagram-type-family) i = refl-htpy
See also
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).