Dependent homotopies
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-22.
Last modified on 2024-01-28.
module foundation.dependent-homotopies where
Imports
open import foundation.universe-levels open import foundation-core.dependent-identifications open import foundation-core.homotopies
Idea
Consider a homotopy H : f ~ g
between two
functions f g : (x : A) → B x
. Furthermore, consider a type family
C : (x : A) → B x → 𝒰
and two functions
f' : (x : A) → C x (f x)
g' : (x : A) → C x (g x)
A dependent homotopy¶ from f'
to g'
over H
is a family of
dependent identifications from
f' x
to g' x
over H x
.
Definitions
Dependent homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) {f g : (x : A) → B x} (H : f ~ g) where dependent-homotopy : ((x : A) → C x (f x)) → ((x : A) → C x (g x)) → UU (l1 ⊔ l3) dependent-homotopy f' g' = (x : A) → dependent-identification (C x) (H x) (f' x) (g' x)
The reflexive dependent homotopy
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) {f : (x : A) → B x} where refl-dependent-homotopy : {f' : (x : A) → C x (f x)} → dependent-homotopy C refl-htpy f' f' refl-dependent-homotopy = refl-htpy
Iterated dependent homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) {f g : (x : A) → B x} {H K : f ~ g} (L : H ~ K) where dependent-homotopy² : {f' : (x : A) → C x (f x)} {g' : (x : A) → C x (g x)} → dependent-homotopy C H f' g' → dependent-homotopy C K f' g' → UU (l1 ⊔ l3) dependent-homotopy² {f'} {g'} H' K' = (x : A) → dependent-identification² (C x) (L x) (H' x) (K' x)
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).