The nonpositive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-07.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.nonpositive-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonpositive-integers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels
Idea
A rational number x
is said to
be
nonpositive¶
if its numerator is a
nonpositive integer.
Definitions
The property of being a nonpositive rational number
module _ (q : ℚ) where is-nonpositive-ℚ : UU lzero is-nonpositive-ℚ = is-nonnegative-ℚ (neg-ℚ q) abstract is-prop-is-nonpositive-ℚ : is-prop is-nonpositive-ℚ is-prop-is-nonpositive-ℚ = is-prop-is-nonnegative-ℚ (neg-ℚ q) is-nonpositive-prop-ℚ : Prop lzero is-nonpositive-prop-ℚ = (is-nonpositive-ℚ , is-prop-is-nonpositive-ℚ)
The type of nonpositive rational numbers
nonpositive-ℚ : UU lzero nonpositive-ℚ = type-subtype is-nonpositive-prop-ℚ ℚ⁰⁻ : UU lzero ℚ⁰⁻ = nonpositive-ℚ module _ (x : nonpositive-ℚ) where rational-ℚ⁰⁻ : ℚ rational-ℚ⁰⁻ = pr1 x fraction-ℚ⁰⁻ : fraction-ℤ fraction-ℚ⁰⁻ = fraction-ℚ rational-ℚ⁰⁻ numerator-ℚ⁰⁻ : ℤ numerator-ℚ⁰⁻ = numerator-ℚ rational-ℚ⁰⁻ denominator-ℚ⁰⁻ : ℤ denominator-ℚ⁰⁻ = denominator-ℚ rational-ℚ⁰⁻
Properties
Equality on nonpositive rational numbers
abstract eq-ℚ⁰⁻ : {x y : ℚ⁰⁻} → rational-ℚ⁰⁻ x = rational-ℚ⁰⁻ y → x = y eq-ℚ⁰⁻ {x} {y} = eq-type-subtype is-nonpositive-prop-ℚ
A rational number is nonpositive if and only if it is less than or equal to zero
module _ (q : ℚ) where opaque unfolding neg-ℚ leq-zero-is-nonpositive-ℚ : is-nonpositive-ℚ q → leq-ℚ q zero-ℚ leq-zero-is-nonpositive-ℚ is-nonpos-q = tr ( λ p → leq-ℚ p zero-ℚ) ( neg-neg-ℚ q) ( neg-leq-ℚ _ _ (leq-zero-is-nonnegative-ℚ (neg-ℚ q) is-nonpos-q)) is-nonpositive-leq-zero-ℚ : leq-ℚ q zero-ℚ → is-nonpositive-ℚ q is-nonpositive-leq-zero-ℚ q≤0 = is-nonnegative-leq-zero-ℚ (neg-ℚ q) (neg-leq-ℚ _ _ q≤0) is-nonpositive-iff-leq-zero-ℚ : is-nonpositive-ℚ q ↔ leq-ℚ q zero-ℚ is-nonpositive-iff-leq-zero-ℚ = ( leq-zero-is-nonpositive-ℚ , is-nonpositive-leq-zero-ℚ)
Recent changes
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).