Opposite rings
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-04-22.
Last modified on 2023-05-01.
module ring-theory.opposite-rings where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import ring-theory.rings
Idea
The opposite of a ring R is a ring with the same underlying abelian group, but
with multiplication given by x·y := yx
.
Definition
module _ {l : Level} (R : Ring l) where op-Ring : Ring l pr1 op-Ring = ab-Ring R pr1 (pr1 (pr2 op-Ring)) = mul-Ring' R pr2 (pr1 (pr2 op-Ring)) x y z = inv (associative-mul-Ring R z y x) pr1 (pr1 (pr2 (pr2 op-Ring))) = one-Ring R pr1 (pr2 (pr1 (pr2 (pr2 op-Ring)))) = right-unit-law-mul-Ring R pr2 (pr2 (pr1 (pr2 (pr2 op-Ring)))) = left-unit-law-mul-Ring R pr1 (pr2 (pr2 (pr2 op-Ring))) x y z = right-distributive-mul-add-Ring R y z x pr2 (pr2 (pr2 (pr2 op-Ring))) x y z = left-distributive-mul-add-Ring R z x y
Recent changes
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).