Upper Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-02-16.
Last modified on 2025-02-16.
module real-numbers.upper-dedekind-real-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.powersets open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universal-quantification open import foundation.universe-levels
Idea
A subtype U
of
the rational numbers is an
upper Dedekind cut¶ if it satisfies the
following two conditions:
- Inhabitedness.
U
is inhabited. - Upper roundedness. A rational number
q
is inU
if and only if there existsp < q
such thatp ∈ U
.
The upper Dedekind real numbers¶ is the type of all upper Dedekind cuts.
Definition
Upper Dedekind cuts
module _ {l : Level} (U : subtype l ℚ) where is-upper-dedekind-cut-Prop : Prop l is-upper-dedekind-cut-Prop = (∃ ℚ U) ∧ (∀' ℚ (λ q → U q ⇔ (∃ ℚ (λ p → le-ℚ-Prop p q ∧ U p)))) is-upper-dedekind-cut : UU l is-upper-dedekind-cut = type-Prop is-upper-dedekind-cut-Prop
The upper Dedekind real numbers
upper-ℝ : (l : Level) → UU (lsuc l) upper-ℝ l = Σ (subtype l ℚ) is-upper-dedekind-cut module _ {l : Level} (x : upper-ℝ l) where cut-upper-ℝ : subtype l ℚ cut-upper-ℝ = pr1 x is-in-cut-upper-ℝ : ℚ → UU l is-in-cut-upper-ℝ = is-in-subtype cut-upper-ℝ is-upper-dedekind-cut-upper-ℝ : is-upper-dedekind-cut cut-upper-ℝ is-upper-dedekind-cut-upper-ℝ = pr2 x is-inhabited-cut-upper-ℝ : exists ℚ cut-upper-ℝ is-inhabited-cut-upper-ℝ = pr1 (pr2 x) is-rounded-cut-upper-ℝ : (q : ℚ) → is-in-cut-upper-ℝ q ↔ exists ℚ (λ p → le-ℚ-Prop p q ∧ cut-upper-ℝ p) is-rounded-cut-upper-ℝ = pr2 (pr2 x)
Properties
The upper Dedekind reals form a set
abstract is-set-upper-ℝ : (l : Level) → is-set (upper-ℝ l) is-set-upper-ℝ l = is-set-Σ ( is-set-function-type (is-trunc-Truncated-Type neg-one-𝕋)) ( λ q → is-set-is-prop (is-prop-type-Prop (is-upper-dedekind-cut-Prop q)))
Upper Dedekind cuts are closed under strict inequality on the rationals
module _ {l : Level} (x : upper-ℝ l) (p q : ℚ) where is-in-cut-le-ℚ-upper-ℝ : le-ℚ p q → is-in-cut-upper-ℝ x p → is-in-cut-upper-ℝ x q is-in-cut-le-ℚ-upper-ℝ p<q p<x = backward-implication ( is-rounded-cut-upper-ℝ x q) ( intro-exists p (p<q , p<x))
Upper Dedekind cuts are closed under inequality on the rationals
module _ {l : Level} (x : upper-ℝ l) (p q : ℚ) where is-in-cut-leq-ℚ-upper-ℝ : leq-ℚ p q → is-in-cut-upper-ℝ x p → is-in-cut-upper-ℝ x q is-in-cut-leq-ℚ-upper-ℝ p≤q x<p with decide-le-leq-ℚ p q ... | inl p<q = is-in-cut-le-ℚ-upper-ℝ x p q p<q x<p ... | inr q≤p = tr (is-in-cut-upper-ℝ x) (antisymmetric-leq-ℚ p q p≤q q≤p) x<p
Two upper real numbers with the same cut are equal
module _ {l : Level} (x y : upper-ℝ l) where eq-eq-cut-upper-ℝ : cut-upper-ℝ x = cut-upper-ℝ y → x = y eq-eq-cut-upper-ℝ = eq-type-subtype is-upper-dedekind-cut-Prop eq-sim-cut-upper-ℝ : sim-subtype (cut-upper-ℝ x) (cut-upper-ℝ y) → x = y eq-sim-cut-upper-ℝ = eq-eq-cut-upper-ℝ ∘ antisymmetric-sim-subtype (cut-upper-ℝ x) (cut-upper-ℝ y)
See also
- Lower Dedekind cuts, the dual structure, are defined in
real-numbers.lower-dedekind-real-numbers
. - Dedekind cuts, which form the usual real numbers, are defined in
real-numbers.dedekind-real-numbers
References
This page follows the terminology used in the exercises of Section 11 in [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-02-16. Louis Wasserman. Break the Dedekind reals into lower and upper Dedekind reals (#1314).