Transposition of addition and subtraction through cuts of Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-04-02.
Last modified on 2025-04-02.
{-# OPTIONS --lossy-unification #-} module real-numbers.transposition-addition-subtraction-cuts-dedekind-real-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
Transposition laws for addition and subtraction on the cuts of Dedekind real numbers include:
p + q
is in the lower cut ofx
iffp
is in the lower cut ofx - q
p - q
is in the lower cut ofx
iffp
is in the lower cut ofx + q
These laws follow from the more general transposition laws for addition and subtraction on real numbers with respect to strict inequality.
Transposition laws for lower cuts
module _ {l : Level} (x : ℝ l) (p q : ℚ) where abstract transpose-add-is-in-lower-cut-ℝ : is-in-lower-cut-ℝ x (p +ℚ q) → is-in-lower-cut-ℝ (x -ℝ real-ℚ q) p transpose-add-is-in-lower-cut-ℝ p+q<x = is-in-lower-cut-le-real-ℚ ( p) ( x -ℝ real-ℚ q) ( le-transpose-left-add-ℝ ( real-ℚ p) ( real-ℚ q) ( x) ( inv-tr ( λ y → le-ℝ y x) ( add-real-ℚ p q) ( le-real-is-in-lower-cut-ℚ (p +ℚ q) x p+q<x))) transpose-is-in-lower-cut-diff-ℝ : is-in-lower-cut-ℝ (x -ℝ real-ℚ p) q → is-in-lower-cut-ℝ x (q +ℚ p) transpose-is-in-lower-cut-diff-ℝ x-p<q = is-in-lower-cut-le-real-ℚ ( q +ℚ p) ( x) ( tr ( λ y → le-ℝ y x) ( add-real-ℚ q p) ( le-transpose-right-diff-ℝ ( real-ℚ q) ( x) ( real-ℚ p) ( le-real-is-in-lower-cut-ℚ q (x -ℝ real-ℚ p) x-p<q))) module _ {l : Level} (x : ℝ l) (p q : ℚ) where abstract transpose-diff-is-in-lower-cut-ℝ : is-in-lower-cut-ℝ x (p -ℚ q) → is-in-lower-cut-ℝ (x +ℝ real-ℚ q) p transpose-diff-is-in-lower-cut-ℝ x<p-q = tr ( λ y → is-in-lower-cut-ℝ y p) ( ap ( x +ℝ_) ( ap neg-ℝ (inv (neg-real-ℚ q)) ∙ neg-neg-ℝ (real-ℚ q))) ( transpose-add-is-in-lower-cut-ℝ x p (neg-ℚ q) x<p-q) transpose-is-in-lower-cut-add-ℝ : is-in-lower-cut-ℝ (x +ℝ real-ℚ p) q → is-in-lower-cut-ℝ x (q -ℚ p) transpose-is-in-lower-cut-add-ℝ q<x+p = transpose-is-in-lower-cut-diff-ℝ ( x) ( neg-ℚ p) ( q) ( tr ( λ y → is-in-lower-cut-ℝ y q) ( ap ( x +ℝ_) ( inv (neg-neg-ℝ (real-ℚ p)) ∙ ap neg-ℝ (neg-real-ℚ p))) ( q<x+p))
Transposition laws for upper cuts
module _ {l : Level} (x : ℝ l) (p q : ℚ) where abstract transpose-add-is-in-upper-cut-ℝ : is-in-upper-cut-ℝ x (p +ℚ q) → is-in-upper-cut-ℝ (x -ℝ real-ℚ q) p transpose-add-is-in-upper-cut-ℝ x<p+q = is-in-upper-cut-le-real-ℚ ( p) ( x -ℝ real-ℚ q) ( le-transpose-right-add-ℝ ( x) ( real-ℚ p) ( real-ℚ q) ( inv-tr ( le-ℝ x) ( add-real-ℚ p q) ( le-real-is-in-upper-cut-ℚ (p +ℚ q) x x<p+q))) transpose-is-in-upper-cut-diff-ℝ : is-in-upper-cut-ℝ (x -ℝ real-ℚ p) q → is-in-upper-cut-ℝ x (q +ℚ p) transpose-is-in-upper-cut-diff-ℝ x-p<q = is-in-upper-cut-le-real-ℚ ( q +ℚ p) ( x) ( tr ( le-ℝ x) ( add-real-ℚ q p) ( le-transpose-left-diff-ℝ ( x) ( real-ℚ p) ( real-ℚ q) ( le-real-is-in-upper-cut-ℚ q (x -ℝ real-ℚ p) x-p<q))) module _ {l : Level} (x : ℝ l) (p q : ℚ) where abstract transpose-diff-is-in-upper-cut-ℝ : is-in-upper-cut-ℝ x (p -ℚ q) → is-in-upper-cut-ℝ (x +ℝ real-ℚ q) p transpose-diff-is-in-upper-cut-ℝ x<p-q = tr ( λ y → is-in-upper-cut-ℝ y p) ( ap ( x +ℝ_) ( ap neg-ℝ (inv (neg-real-ℚ q)) ∙ neg-neg-ℝ (real-ℚ q))) ( transpose-add-is-in-upper-cut-ℝ x p (neg-ℚ q) x<p-q) transpose-is-in-upper-cut-add-ℝ : is-in-upper-cut-ℝ (x +ℝ real-ℚ p) q → is-in-upper-cut-ℝ x (q -ℚ p) transpose-is-in-upper-cut-add-ℝ q<x+p = transpose-is-in-upper-cut-diff-ℝ ( x) ( neg-ℚ p) ( q) ( tr ( λ y → is-in-upper-cut-ℝ y q) ( ap ( x +ℝ_) ( inv (neg-neg-ℝ (real-ℚ p)) ∙ ap neg-ℝ (neg-real-ℚ p))) ( q<x+p))
Recent changes
- 2025-04-02. Louis Wasserman. Cauchy completeness of the Dedekind real numbers (#1343).