Kernels of ring homomorphisms

Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.

Created on 2023-09-21.
Last modified on 2023-11-24.

module ring-theory.kernels-of-ring-homomorphisms where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.kernels-homomorphisms-groups
open import group-theory.subgroups-abelian-groups

open import ring-theory.homomorphisms-rings
open import ring-theory.ideals-rings
open import ring-theory.rings
open import ring-theory.subsets-rings

Idea

The kernel of a ring homomorphism f : R → S is the ideal of R consisting of all elements x : R equipped with an identification f x = 0.

Definitions

The kernel of a ring homomorphism

module _
  {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (f : hom-Ring R S)
  where

  subgroup-kernel-hom-Ring : Subgroup-Ab l2 (ab-Ring R)
  subgroup-kernel-hom-Ring =
    subgroup-kernel-hom-Group
      ( group-Ring R)
      ( group-Ring S)
      ( hom-group-hom-Ring R S f)

  subset-kernel-hom-Ring : subset-Ring l2 R
  subset-kernel-hom-Ring =
    subset-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring

  contains-zero-kernel-hom-Ring :
    contains-zero-subset-Ring R subset-kernel-hom-Ring
  contains-zero-kernel-hom-Ring =
    contains-zero-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring

  is-closed-under-addition-kernel-hom-Ring :
    is-closed-under-addition-subset-Ring R subset-kernel-hom-Ring
  is-closed-under-addition-kernel-hom-Ring =
    is-closed-under-addition-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring

  is-closed-under-negatives-kernel-hom-Ring :
    is-closed-under-negatives-subset-Ring R subset-kernel-hom-Ring
  is-closed-under-negatives-kernel-hom-Ring =
    is-closed-under-negatives-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring

  is-additive-subgroup-kernel-hom-Ring :
    is-additive-subgroup-subset-Ring R subset-kernel-hom-Ring
  pr1 is-additive-subgroup-kernel-hom-Ring =
    contains-zero-kernel-hom-Ring
  pr1 (pr2 is-additive-subgroup-kernel-hom-Ring) =
    is-closed-under-addition-kernel-hom-Ring
  pr2 (pr2 is-additive-subgroup-kernel-hom-Ring) =
    is-closed-under-negatives-kernel-hom-Ring

  is-closed-under-left-multiplication-kernel-hom-Ring :
    is-closed-under-left-multiplication-subset-Ring R subset-kernel-hom-Ring
  is-closed-under-left-multiplication-kernel-hom-Ring x y H =
    ( inv (right-zero-law-mul-Ring S _)) 
    ( ap (mul-Ring S _) H) 
    ( inv (preserves-mul-hom-Ring R S f))

  is-closed-under-right-multiplication-kernel-hom-Ring :
    is-closed-under-right-multiplication-subset-Ring R subset-kernel-hom-Ring
  is-closed-under-right-multiplication-kernel-hom-Ring x y H =
    ( inv (left-zero-law-mul-Ring S _)) 
    ( ap (mul-Ring' S _) H) 
    ( inv (preserves-mul-hom-Ring R S f))

  kernel-hom-Ring : ideal-Ring l2 R
  pr1 kernel-hom-Ring =
    subset-kernel-hom-Ring
  pr1 (pr2 kernel-hom-Ring) =
    is-additive-subgroup-kernel-hom-Ring
  pr1 (pr2 (pr2 kernel-hom-Ring)) =
    is-closed-under-left-multiplication-kernel-hom-Ring
  pr2 (pr2 (pr2 kernel-hom-Ring)) =
    is-closed-under-right-multiplication-kernel-hom-Ring

Recent changes