Kernels of ring homomorphisms
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-09-21.
Last modified on 2023-11-24.
module ring-theory.kernels-of-ring-homomorphisms where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.kernels-homomorphisms-groups open import group-theory.subgroups-abelian-groups open import ring-theory.homomorphisms-rings open import ring-theory.ideals-rings open import ring-theory.rings open import ring-theory.subsets-rings
Idea
The kernel of a ring homomorphism
f : R → S
is the ideal of R
consisting of all
elements x : R
equipped with an identification f x = 0
.
Definitions
The kernel of a ring homomorphism
module _ {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (f : hom-Ring R S) where subgroup-kernel-hom-Ring : Subgroup-Ab l2 (ab-Ring R) subgroup-kernel-hom-Ring = subgroup-kernel-hom-Group ( group-Ring R) ( group-Ring S) ( hom-group-hom-Ring R S f) subset-kernel-hom-Ring : subset-Ring l2 R subset-kernel-hom-Ring = subset-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring contains-zero-kernel-hom-Ring : contains-zero-subset-Ring R subset-kernel-hom-Ring contains-zero-kernel-hom-Ring = contains-zero-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring is-closed-under-addition-kernel-hom-Ring : is-closed-under-addition-subset-Ring R subset-kernel-hom-Ring is-closed-under-addition-kernel-hom-Ring = is-closed-under-addition-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring is-closed-under-negatives-kernel-hom-Ring : is-closed-under-negatives-subset-Ring R subset-kernel-hom-Ring is-closed-under-negatives-kernel-hom-Ring = is-closed-under-negatives-Subgroup-Ab (ab-Ring R) subgroup-kernel-hom-Ring is-additive-subgroup-kernel-hom-Ring : is-additive-subgroup-subset-Ring R subset-kernel-hom-Ring pr1 is-additive-subgroup-kernel-hom-Ring = contains-zero-kernel-hom-Ring pr1 (pr2 is-additive-subgroup-kernel-hom-Ring) = is-closed-under-addition-kernel-hom-Ring pr2 (pr2 is-additive-subgroup-kernel-hom-Ring) = is-closed-under-negatives-kernel-hom-Ring is-closed-under-left-multiplication-kernel-hom-Ring : is-closed-under-left-multiplication-subset-Ring R subset-kernel-hom-Ring is-closed-under-left-multiplication-kernel-hom-Ring x y H = ( inv (right-zero-law-mul-Ring S _)) ∙ ( ap (mul-Ring S _) H) ∙ ( inv (preserves-mul-hom-Ring R S f)) is-closed-under-right-multiplication-kernel-hom-Ring : is-closed-under-right-multiplication-subset-Ring R subset-kernel-hom-Ring is-closed-under-right-multiplication-kernel-hom-Ring x y H = ( inv (left-zero-law-mul-Ring S _)) ∙ ( ap (mul-Ring' S _) H) ∙ ( inv (preserves-mul-hom-Ring R S f)) kernel-hom-Ring : ideal-Ring l2 R pr1 kernel-hom-Ring = subset-kernel-hom-Ring pr1 (pr2 kernel-hom-Ring) = is-additive-subgroup-kernel-hom-Ring pr1 (pr2 (pr2 kernel-hom-Ring)) = is-closed-under-left-multiplication-kernel-hom-Ring pr2 (pr2 (pr2 kernel-hom-Ring)) = is-closed-under-right-multiplication-kernel-hom-Ring
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).