Decidable subposets
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-03-16.
Last modified on 2023-06-25.
module order-theory.decidable-subposets where
Imports
open import foundation.binary-relations open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import order-theory.posets open import order-theory.subposets
Idea
A decidable subposet of a poset P
is a decidable subtype of P
, equipped
with the restricted ordering of P
.
Definition
Decidable-Subposet : {l1 l2 : Level} (l3 : Level) → Poset l1 l2 → UU (l1 ⊔ lsuc l3) Decidable-Subposet l3 P = decidable-subtype l3 (type-Poset P) module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (S : Decidable-Subposet l3 P) where type-Decidable-Subposet : UU (l1 ⊔ l3) type-Decidable-Subposet = type-Subposet P (subtype-decidable-subtype S) eq-type-Decidable-Subposet : (x y : type-Decidable-Subposet) → Id (pr1 x) (pr1 y) → Id x y eq-type-Decidable-Subposet = eq-type-Subposet P (subtype-decidable-subtype S) leq-Decidable-Subposet-Prop : (x y : type-Decidable-Subposet) → Prop l2 leq-Decidable-Subposet-Prop = leq-Subposet-Prop P (subtype-decidable-subtype S) leq-Decidable-Subposet : (x y : type-Decidable-Subposet) → UU l2 leq-Decidable-Subposet = leq-Subposet P (subtype-decidable-subtype S) is-prop-leq-Decidable-Subposet : (x y : type-Decidable-Subposet) → is-prop (leq-Decidable-Subposet x y) is-prop-leq-Decidable-Subposet = is-prop-leq-Subposet P (subtype-decidable-subtype S) refl-leq-Decidable-Subposet : is-reflexive leq-Decidable-Subposet refl-leq-Decidable-Subposet = refl-leq-Subposet P (subtype-decidable-subtype S) transitive-leq-Decidable-Subposet : is-transitive leq-Decidable-Subposet transitive-leq-Decidable-Subposet = transitive-leq-Subposet P (subtype-decidable-subtype S) poset-Decidable-Subposet : Poset (l1 ⊔ l3) l2 poset-Decidable-Subposet = poset-Subposet P (subtype-decidable-subtype S)
Recent changes
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-13. Fredrik Bakke. Remove unused imports and fix some unaddressed comments (#621).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. cleaning up order theory (#591).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).