Decidable subposets

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.

Created on 2022-03-16.
Last modified on 2023-06-25.

module order-theory.decidable-subposets where
open import foundation.binary-relations
open import foundation.decidable-subtypes
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import order-theory.posets
open import order-theory.subposets


A decidable subposet of a poset P is a decidable subtype of P, equipped with the restricted ordering of P.


Decidable-Subposet :
  {l1 l2 : Level} (l3 : Level)  Poset l1 l2  UU (l1  lsuc l3)
Decidable-Subposet l3 P = decidable-subtype l3 (type-Poset P)

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) (S : Decidable-Subposet l3 P)

  type-Decidable-Subposet : UU (l1  l3)
  type-Decidable-Subposet =
    type-Subposet P (subtype-decidable-subtype S)

  eq-type-Decidable-Subposet :
    (x y : type-Decidable-Subposet)  Id (pr1 x) (pr1 y)  Id x y
  eq-type-Decidable-Subposet =
    eq-type-Subposet P (subtype-decidable-subtype S)

  leq-Decidable-Subposet-Prop :
    (x y : type-Decidable-Subposet)  Prop l2
  leq-Decidable-Subposet-Prop =
    leq-Subposet-Prop P (subtype-decidable-subtype S)

  leq-Decidable-Subposet : (x y : type-Decidable-Subposet)  UU l2
  leq-Decidable-Subposet =
    leq-Subposet P (subtype-decidable-subtype S)

  is-prop-leq-Decidable-Subposet :
    (x y : type-Decidable-Subposet) 
    is-prop (leq-Decidable-Subposet x y)
  is-prop-leq-Decidable-Subposet =
    is-prop-leq-Subposet P (subtype-decidable-subtype S)

  refl-leq-Decidable-Subposet : is-reflexive leq-Decidable-Subposet
  refl-leq-Decidable-Subposet =
    refl-leq-Subposet P (subtype-decidable-subtype S)

  transitive-leq-Decidable-Subposet : is-transitive leq-Decidable-Subposet
  transitive-leq-Decidable-Subposet =
    transitive-leq-Subposet P (subtype-decidable-subtype S)

  poset-Decidable-Subposet : Poset (l1  l3) l2
  poset-Decidable-Subposet = poset-Subposet P (subtype-decidable-subtype S)

Recent changes