Addition of differentiable functions on proper closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
{-# OPTIONS --lossy-unification #-} module analysis.addition-differentiable-real-maps-on-proper-closed-intervals-real-numbers where
Imports
open import analysis.differentiable-real-maps-on-proper-closed-intervals-real-numbers open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.rational-real-numbers
Idea
Given two
differentiable
functions f and g from a
proper closed interval
in the real numbers to the real
numbers, with derivatives f' and g', the map x ↦ f x + g x is
differentiable with derivative x ↦ f' x + g' x.
Proof
module _ {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l3) (f' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (g' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l3)) (is-derivative-f-f' : is-derivative-real-map-proper-closed-interval-ℝ [a,b] f f') (is-derivative-g-g' : is-derivative-real-map-proper-closed-interval-ℝ [a,b] g g') where abstract is-derivative-add-real-map-proper-closed-interval-ℝ : is-derivative-real-map-proper-closed-interval-ℝ ( [a,b]) ( λ x → f x +ℝ g x) ( λ x → f' x +ℝ g' x) is-derivative-add-real-map-proper-closed-interval-ℝ = let open do-syntax-trunc-Prop ( is-derivative-prop-real-map-proper-closed-interval-ℝ ( [a,b]) ( λ x → f x +ℝ g x) ( λ x → f' x +ℝ g' x)) open inequality-reasoning-Large-Poset ℝ-Large-Poset in do (μ , is-mod-μ) ← is-derivative-f-f' (ν , is-mod-ν) ← is-derivative-g-g' is-derivative-modulus-of-real-map-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → let (ε₁ , ε₂ , ε₁+ε₂=ε) = split-ℚ⁺ ε in ( min-ℚ⁺ (μ ε₁) (ν ε₂) , λ x y Nxy → chain-of-inequalities dist-ℝ ( (f y +ℝ g y) -ℝ (f x +ℝ g x)) ( (f' x +ℝ g' x) *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ ( (f y -ℝ f x) +ℝ (g y -ℝ g x)) ( f' x *ℝ (pr1 y -ℝ pr1 x) +ℝ g' x *ℝ (pr1 y -ℝ pr1 x)) by leq-eq-ℝ ( ap-dist-ℝ ( interchange-law-diff-add-ℝ _ _ _ _) ( right-distributive-mul-add-ℝ _ _ _)) ≤ abs-ℝ ( ( (f y -ℝ f x) -ℝ f' x *ℝ (pr1 y -ℝ pr1 x)) +ℝ ( (g y -ℝ g x) -ℝ g' x *ℝ (pr1 y -ℝ pr1 x))) by leq-eq-ℝ (ap abs-ℝ (interchange-law-diff-add-ℝ _ _ _ _)) ≤ ( dist-ℝ (f y -ℝ f x) (f' x *ℝ (pr1 y -ℝ pr1 x))) +ℝ ( dist-ℝ (g y -ℝ g x) (g' x *ℝ (pr1 y -ℝ pr1 x))) by triangle-inequality-abs-ℝ _ _ ≤ ( real-ℚ⁺ ε₁ *ℝ dist-ℝ (pr1 x) (pr1 y)) +ℝ ( real-ℚ⁺ ε₂ *ℝ dist-ℝ (pr1 x) (pr1 y)) by preserves-leq-add-ℝ ( is-mod-μ ( ε₁) ( x) ( y) ( weakly-monotonic-neighborhood-ℝ ( pr1 x) ( pr1 y) ( min-ℚ⁺ (μ ε₁) (ν ε₂)) ( μ ε₁) ( leq-left-min-ℚ⁺ _ _) ( Nxy))) ( is-mod-ν ( ε₂) ( x) ( y) ( weakly-monotonic-neighborhood-ℝ ( pr1 x) ( pr1 y) ( min-ℚ⁺ (μ ε₁) (ν ε₂)) ( ν ε₂) ( leq-right-min-ℚ⁺ _ _) ( Nxy))) ≤ (real-ℚ⁺ ε₁ +ℝ real-ℚ⁺ ε₂) *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (inv (right-distributive-mul-add-ℝ _ _ _)) ≤ real-ℚ⁺ (ε₁ +ℚ⁺ ε₂) *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (ap-mul-ℝ (add-real-ℚ _ _) refl) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (ap-mul-ℝ (ap real-ℚ⁺ ε₁+ε₂=ε) refl))) add-differentiable-real-map-proper-closed-interval-ℝ : {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) → differentiable-real-map-proper-closed-interval-ℝ l2 [a,b] → differentiable-real-map-proper-closed-interval-ℝ l3 [a,b] → differentiable-real-map-proper-closed-interval-ℝ (l2 ⊔ l3) [a,b] add-differentiable-real-map-proper-closed-interval-ℝ [a,b] (f , f' , Df=f') (g , g' , Dg=g') = ( ( λ x → f x +ℝ g x) , ( λ x → f' x +ℝ g' x) , is-derivative-add-real-map-proper-closed-interval-ℝ ( [a,b]) ( f) ( g) ( f') ( g') ( Df=f') ( Dg=g'))
Recent changes
- 2026-01-30. Louis Wasserman. Refactor differentiable functions (#1774).