Monomorphisms in large precategories

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-09-13.
Last modified on 2023-11-24.

module category-theory.monomorphisms-in-large-precategories where
Imports
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-precategories

open import foundation.embeddings
open import foundation.equivalences
open import foundation.propositions
open import foundation.universe-levels

Idea

A morphism f : x → y is a monomorphism if whenever we have two morphisms g h : w → x such that f ∘ g = f ∘ h, then in fact g = h. The way to state this in Homotopy Type Theory is to say that postcomposition by f is an embedding.

Definition

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level)
  (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2)
  (f : hom-Large-Precategory C X Y)
  where

  is-mono-prop-Large-Precategory : Prop (α l3  β l3 l1  β l3 l2)
  is-mono-prop-Large-Precategory =
    Π-Prop
      ( obj-Large-Precategory C l3)
      ( λ Z  is-emb-Prop (comp-hom-Large-Precategory C {X = Z} f))

  is-mono-Large-Precategory : UU (α l3  β l3 l1  β l3 l2)
  is-mono-Large-Precategory = type-Prop is-mono-prop-Large-Precategory

  is-prop-is-mono-Large-Precategory : is-prop is-mono-Large-Precategory
  is-prop-is-mono-Large-Precategory =
    is-prop-type-Prop is-mono-prop-Large-Precategory

Properties

Isomorphisms are monomorphisms

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level)
  (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2)
  (f : iso-Large-Precategory C X Y)
  where

  is-mono-iso-Large-Precategory :
    is-mono-Large-Precategory C l3 X Y (hom-iso-Large-Precategory C f)
  is-mono-iso-Large-Precategory Z =
    is-emb-is-equiv (is-equiv-postcomp-hom-iso-Large-Precategory C f Z)

Recent changes