Maps between set-magmoids
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-24.
module category-theory.maps-set-magmoids where
Imports
open import category-theory.set-magmoids open import foundation.action-on-identifications-functions open import foundation.commuting-pentagons-of-identifications open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels
Idea
A map from a set-magmoid C
to a set
magmoid D
consists of:
- a map
F₀ : C → D
on objects, and - a map
F₁ : hom x y → hom (F₀ x) (F₀ y)
on morphisms.
Definitions
Maps between set-magmoids
module _ {l1 l2 l3 l4 : Level} (C : Set-Magmoid l1 l2) (D : Set-Magmoid l3 l4) where map-Set-Magmoid : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) map-Set-Magmoid = Σ ( obj-Set-Magmoid C → obj-Set-Magmoid D) ( λ F₀ → {x y : obj-Set-Magmoid C} → hom-Set-Magmoid C x y → hom-Set-Magmoid D (F₀ x) (F₀ y)) obj-map-Set-Magmoid : (F : map-Set-Magmoid) → obj-Set-Magmoid C → obj-Set-Magmoid D obj-map-Set-Magmoid = pr1 hom-map-Set-Magmoid : (F : map-Set-Magmoid) {x y : obj-Set-Magmoid C} → hom-Set-Magmoid C x y → hom-Set-Magmoid D (obj-map-Set-Magmoid F x) (obj-map-Set-Magmoid F y) hom-map-Set-Magmoid = pr2
The identity map on a set-magmoid
module _ {l1 l2 : Level} (A : Set-Magmoid l1 l2) where id-map-Set-Magmoid : map-Set-Magmoid A A pr1 id-map-Set-Magmoid = id pr2 id-map-Set-Magmoid = id
Composition of maps on set-magmoids
Any two compatible maps can be composed to a new map.
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Set-Magmoid l1 l2) (B : Set-Magmoid l3 l4) (C : Set-Magmoid l5 l6) (G : map-Set-Magmoid B C) (F : map-Set-Magmoid A B) where obj-comp-map-Set-Magmoid : obj-Set-Magmoid A → obj-Set-Magmoid C obj-comp-map-Set-Magmoid = obj-map-Set-Magmoid B C G ∘ obj-map-Set-Magmoid A B F hom-comp-map-Set-Magmoid : {x y : obj-Set-Magmoid A} → hom-Set-Magmoid A x y → hom-Set-Magmoid C (obj-comp-map-Set-Magmoid x) (obj-comp-map-Set-Magmoid y) hom-comp-map-Set-Magmoid = hom-map-Set-Magmoid B C G ∘ hom-map-Set-Magmoid A B F comp-map-Set-Magmoid : map-Set-Magmoid A C pr1 comp-map-Set-Magmoid = obj-comp-map-Set-Magmoid pr2 comp-map-Set-Magmoid = hom-comp-map-Set-Magmoid
Properties
Categorical laws for map composition
Unit laws for map composition
module _ {l1 l2 l3 l4 : Level} (A : Set-Magmoid l1 l2) (B : Set-Magmoid l3 l4) (F : map-Set-Magmoid A B) where left-unit-law-comp-map-Set-Magmoid : comp-map-Set-Magmoid A B B (id-map-Set-Magmoid B) F = F left-unit-law-comp-map-Set-Magmoid = refl right-unit-law-comp-map-Set-Magmoid : comp-map-Set-Magmoid A A B F (id-map-Set-Magmoid A) = F right-unit-law-comp-map-Set-Magmoid = refl
Associativity of map composition
module _ {l1 l1' l2 l2' l3 l3' l4 l4' : Level} (A : Set-Magmoid l1 l1') (B : Set-Magmoid l2 l2') (C : Set-Magmoid l3 l3') (D : Set-Magmoid l4 l4') (F : map-Set-Magmoid A B) (G : map-Set-Magmoid B C) (H : map-Set-Magmoid C D) where associative-comp-map-Set-Magmoid : comp-map-Set-Magmoid A B D (comp-map-Set-Magmoid B C D H G) F = comp-map-Set-Magmoid A C D H (comp-map-Set-Magmoid A B C G F) associative-comp-map-Set-Magmoid = refl
Mac Lane pentagon for map composition
The Mac Lane pentagon is a higher coherence of the associator for map composition. Since map composition is strictly associative, the Mac Lane pentagon also follows by reflexivity.
(I(GH))F ---- I((GH)F)
/ \
/ \
((IH)G)F I(H(GF))
\ /
\ /
(IH)(GF)
module _ {l1 l1' l2 l2' l3 l3' l4 l4' : Level} (A : Set-Magmoid l1 l1') (B : Set-Magmoid l2 l2') (C : Set-Magmoid l3 l3') (D : Set-Magmoid l4 l4') (E : Set-Magmoid l4 l4') (F : map-Set-Magmoid A B) (G : map-Set-Magmoid B C) (H : map-Set-Magmoid C D) (I : map-Set-Magmoid D E) where mac-lane-pentagon-comp-map-Set-Magmoid : coherence-pentagon-identifications { x = comp-map-Set-Magmoid A B E ( comp-map-Set-Magmoid B D E I ( comp-map-Set-Magmoid B C D H G)) ( F)} { comp-map-Set-Magmoid A D E I ( comp-map-Set-Magmoid A B D ( comp-map-Set-Magmoid B C D H G) ( F))} { comp-map-Set-Magmoid A B E ( comp-map-Set-Magmoid B C E ( comp-map-Set-Magmoid C D E I H) ( G)) ( F)} { comp-map-Set-Magmoid A D E ( I) ( comp-map-Set-Magmoid A C D ( H) ( comp-map-Set-Magmoid A B C G F))} { comp-map-Set-Magmoid A C E ( comp-map-Set-Magmoid C D E I H) ( comp-map-Set-Magmoid A B C G F)} ( associative-comp-map-Set-Magmoid A B D E ( F) (comp-map-Set-Magmoid B C D H G) (I)) ( ap ( λ p → comp-map-Set-Magmoid A B E p F) ( inv (associative-comp-map-Set-Magmoid B C D E G H I))) ( ap ( λ p → comp-map-Set-Magmoid A D E I p) ( associative-comp-map-Set-Magmoid A B C D F G H)) ( associative-comp-map-Set-Magmoid A B C E ( F) (G) (comp-map-Set-Magmoid C D E I H)) ( inv ( associative-comp-map-Set-Magmoid A C D E (comp-map-Set-Magmoid A B C G F) H I)) mac-lane-pentagon-comp-map-Set-Magmoid = refl
See also
- Functors between set-magmoids
- The precategory of maps and natural transformations between precategories
External links
A wikidata identifier was not available for this concept.
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-01. Fredrik Bakke. Fun with functors (#886).