Rational sequences approximating zero
Content created by malarbol.
Created on 2025-05-27.
Last modified on 2025-05-27.
{-# OPTIONS --lossy-unification #-} module metric-spaces.rational-sequences-approximating-zero where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.distance-rational-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonzero-natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import elementary-number-theory.unit-fractions-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-premetric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.metric-spaces open import metric-spaces.rational-approximations-of-zero open import metric-spaces.rational-cauchy-approximations open import metric-spaces.sequences-metric-spaces
Idea
A sequence of rational numbers is an approximation of zero¶ if it converges to 0 in the standard metric space of rational numbers.
Definitions
is-zero-limit-prop-sequence-ℚ : sequence ℚ → Prop lzero is-zero-limit-prop-sequence-ℚ u = is-limit-prop-sequence-Metric-Space metric-space-leq-ℚ u zero-ℚ is-zero-limit-sequence-ℚ : sequence ℚ → UU lzero is-zero-limit-sequence-ℚ u = type-Prop (is-zero-limit-prop-sequence-ℚ u) zero-limit-sequence-ℚ : UU lzero zero-limit-sequence-ℚ = type-subtype is-zero-limit-prop-sequence-ℚ module _ (u : zero-limit-sequence-ℚ) where seq-zero-limit-sequence-ℚ : sequence ℚ seq-zero-limit-sequence-ℚ = pr1 u is-zero-limit-seq-zero-limit-sequence-ℚ : is-limit-sequence-Metric-Space ( metric-space-leq-ℚ) ( seq-zero-limit-sequence-ℚ) ( zero-ℚ) is-zero-limit-seq-zero-limit-sequence-ℚ = pr2 u
Properties
The sequence n ↦ 1/(n+1)
is an approximation of zero
abstract is-zero-limit-reciprocal-rational-succ-ℕ : is-zero-limit-sequence-ℚ reciprocal-rational-succ-ℕ is-zero-limit-reciprocal-rational-succ-ℕ = unit-trunc-Prop ( modulus-reciprocal-rational-succ-ℕ , is-zero-limit-modulus-reciprocal-rational-succ-ℕ) where modulus-reciprocal-rational-succ-ℕ : ℚ⁺ → ℕ modulus-reciprocal-rational-succ-ℕ = nat-ℕ⁺ ∘ pr1 ∘ smaller-reciprocal-ℚ⁺ le-leq-modulus-reciprocal-succ-ℕ : (ε : ℚ⁺) (n : ℕ) → leq-ℕ ( modulus-reciprocal-rational-succ-ℕ ε) ( n) → le-ℚ ( reciprocal-rational-succ-ℕ n) ( rational-ℚ⁺ ε) le-leq-modulus-reciprocal-succ-ℕ ε n H = concatenate-leq-le-ℚ ( reciprocal-rational-succ-ℕ n) ( reciprocal-rational-ℕ⁺ ( pr1 (smaller-reciprocal-ℚ⁺ ε))) ( rational-ℚ⁺ ε) ( leq-reciprocal-rational-ℕ⁺ ( pr1 (smaller-reciprocal-ℚ⁺ ε)) ( succ-nonzero-ℕ' n) ( leq-le-ℕ ( modulus-reciprocal-rational-succ-ℕ ε) ( nat-ℕ⁺ (succ-nonzero-ℕ' n)) ( le-succ-leq-ℕ ( modulus-reciprocal-rational-succ-ℕ ε) ( n) ( H)))) ( pr2 (smaller-reciprocal-ℚ⁺ ε)) is-zero-limit-modulus-reciprocal-rational-succ-ℕ : is-limit-modulus-sequence-Metric-Space ( metric-space-leq-ℚ) ( reciprocal-rational-succ-ℕ) ( zero-ℚ) ( modulus-reciprocal-rational-succ-ℕ) is-zero-limit-modulus-reciprocal-rational-succ-ℕ ε n H = neighborhood-leq-leq-dist-ℚ ( ε) ( reciprocal-rational-succ-ℕ n) ( zero-ℚ) ( leq-le-ℚ { rational-dist-ℚ (reciprocal-rational-succ-ℕ n) zero-ℚ} { rational-ℚ⁺ ε} ( inv-tr ( λ q → le-ℚ q (rational-ℚ⁺ ε)) ( ap ( rational-ℚ⁰⁺) ( right-zero-law-dist-ℚ ( reciprocal-rational-succ-ℕ n) ∙ ( abs-rational-ℚ⁰⁺ ( nonnegative-ℚ⁺ ( positive-reciprocal-rational-succ-ℕ n))))) ( le-leq-modulus-reciprocal-succ-ℕ ε n H))) zero-limit-reciprocal-succ-ℕ : zero-limit-sequence-ℚ zero-limit-reciprocal-succ-ℕ = ( reciprocal-rational-succ-ℕ , is-zero-limit-reciprocal-rational-succ-ℕ)
A sequence with absolute value lesser then an approximation of zero is an approximation of zero
module _ ( u : sequence ℚ) (v : zero-limit-sequence-ℚ) ( |u|≤v : (n : ℕ) → leq-ℚ (rational-abs-ℚ (u n)) (seq-zero-limit-sequence-ℚ v n)) where abstract tr-is-modulus-leq-abs-zero-limit-sequence-ℚ : (m : ℚ⁺ → ℕ) → is-limit-modulus-sequence-Metric-Space ( metric-space-leq-ℚ) ( seq-zero-limit-sequence-ℚ v) ( zero-ℚ) ( m) → is-limit-modulus-sequence-Metric-Space ( metric-space-leq-ℚ) ( u) ( zero-ℚ) ( m) tr-is-modulus-leq-abs-zero-limit-sequence-ℚ m H ε n K = neighborhood-leq-leq-dist-ℚ ( ε) ( u n) ( zero-ℚ) ( transitive-leq-ℚ ( rational-dist-ℚ (u n) zero-ℚ) ( seq-zero-limit-sequence-ℚ v n) ( rational-ℚ⁺ ε) ( tr ( leq-ℚ (seq-zero-limit-sequence-ℚ v n)) ( left-unit-law-add-ℚ (rational-ℚ⁺ ε)) ( pr2 (H ε n K))) ( inv-tr ( λ q → leq-ℚ q (seq-zero-limit-sequence-ℚ v n)) ( ap rational-ℚ⁰⁺ (right-zero-law-dist-ℚ (u n))) ( |u|≤v n))) is-zero-limit-leq-abs-zero-limit-sequence-ℚ : is-zero-limit-sequence-ℚ u is-zero-limit-leq-abs-zero-limit-sequence-ℚ = map-is-inhabited ( tot tr-is-modulus-leq-abs-zero-limit-sequence-ℚ) ( is-zero-limit-seq-zero-limit-sequence-ℚ v)
Any rational approximation of zero defines a sequence approximating zero
module _ (f : approximation-of-zero-ℚ) where seq-approximation-of-zero-ℚ : sequence ℚ seq-approximation-of-zero-ℚ n = map-approximation-of-zero-ℚ ( f) ( positive-reciprocal-rational-ℕ⁺ (succ-nonzero-ℕ' n)) is-zero-limit-seq-approximation-of-zero-ℚ : is-zero-limit-sequence-ℚ seq-approximation-of-zero-ℚ is-zero-limit-seq-approximation-of-zero-ℚ = is-zero-limit-leq-abs-zero-limit-sequence-ℚ ( seq-approximation-of-zero-ℚ) ( zero-limit-reciprocal-succ-ℕ) ( is-approximation-of-zero-map-approximation-of-zero-ℚ f ∘ positive-reciprocal-rational-succ-ℕ) zero-limit-seq-approximation-of-zero-ℚ : zero-limit-sequence-ℚ zero-limit-seq-approximation-of-zero-ℚ = seq-approximation-of-zero-ℚ , is-zero-limit-seq-approximation-of-zero-ℚ
Recent changes
- 2025-05-27. malarbol. Zero approximations (#1424).