Commuting squares of pointed maps
Content created by Fredrik Bakke, Egbert Rijke and maybemabeline.
Created on 2023-05-03.
Last modified on 2024-03-13.
module structured-types.commuting-squares-of-pointed-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-identifications open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import structured-types.pointed-types open import structured-types.whiskering-pointed-homotopies-composition
Idea
Consider a square of pointed maps
top
A --------> X
| |
left | | right
∨ ∨
B --------> Y.
bottom
Such a square is said to be a commuting square¶ of pointed maps if there is a pointed homotopy
bottom ∘∗ left ~∗ right ∘∗ top.
Such a homotopy is referred to as the coherence¶ of the commuting square of pointed maps.
Definitions
Coherences of commuting squares of pointed maps
module _ {l1 l2 l3 l4 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} {C : Pointed-Type l3} {X : Pointed-Type l4} (top : C →∗ B) (left : C →∗ A) (right : B →∗ X) (bottom : A →∗ X) where coherence-square-pointed-maps : UU (l3 ⊔ l4) coherence-square-pointed-maps = bottom ∘∗ left ~∗ right ∘∗ top coherence-square-maps-coherence-square-pointed-maps : coherence-square-pointed-maps → coherence-square-maps ( map-pointed-map top) ( map-pointed-map left) ( map-pointed-map right) ( map-pointed-map bottom) coherence-square-maps-coherence-square-pointed-maps = htpy-pointed-htpy
Operations
Left whiskering of coherences of commuting squares of pointed maps
Consider a commuting square of pointed maps
top
A --------> X
| |
left | | right
∨ ∨
B --------> Y
bottom
and consider a pointed map f : Y →∗ Z
. Then the square
top
A -------------> X
| |
left | | f ∘∗ right
∨ ∨
B -------------> Z
f ∘∗ bottom
also commutes.
module _ {l1 l2 l3 l4 l5 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} {X : Pointed-Type l3} {Y : Pointed-Type l4} {Z : Pointed-Type l5} (f : Y →∗ Z) (top : A →∗ X) (left : A →∗ B) (right : X →∗ Y) (bottom : B →∗ Y) (s : coherence-square-pointed-maps top left right bottom) where left-whisker-comp-coherence-square-pointed-maps : coherence-square-pointed-maps top left (f ∘∗ right) (f ∘∗ bottom) left-whisker-comp-coherence-square-pointed-maps = concat-pointed-htpy ( associative-comp-pointed-map f bottom left) ( concat-pointed-htpy ( left-whisker-comp-pointed-htpy f _ _ s) ( inv-associative-comp-pointed-map f right top))
Left whiskering of coherences of commuting squares of pointed maps
Consider a commuting square of pointed maps
top
A --------> X
| |
left | | right
∨ ∨
B --------> Y
bottom
and consider a pointed map f : Z →∗ A
. Then the square
f ∘∗ top
A ----------> X
| |
left ∘∗ f | | right
∨ ∨
B ----------> Z
bottom
also commutes.
module _ {l1 l2 l3 l4 l5 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} {X : Pointed-Type l3} {Y : Pointed-Type l4} {Z : Pointed-Type l5} (top : A →∗ X) (left : A →∗ B) (right : X →∗ Y) (bottom : B →∗ Y) (s : coherence-square-pointed-maps top left right bottom) (f : Z →∗ A) where right-whisker-comp-coherence-square-pointed-maps : coherence-square-pointed-maps (top ∘∗ f) (left ∘∗ f) right bottom right-whisker-comp-coherence-square-pointed-maps = concat-pointed-htpy ( inv-associative-comp-pointed-map bottom left f) ( concat-pointed-htpy ( right-whisker-comp-pointed-htpy _ _ s f) ( associative-comp-pointed-map right top f))
Horizontal pasting of coherences of commuting squares of pointed maps
Consider two commuting squares of pointed maps, as in the diagram
top-left top-right
A -------------> B --------------> C
| | |
left | | middle | right
∨ ∨ ∨
D -------------> E --------------> F
bottom-left bottom-right
with pointed homotopies
H : bottom-left ∘∗ left ~∗ middle ∘∗ top
K : bottom-right ∘∗ middle ~∗ right ∘∗ top-right.
The horizontal pasting¶ of these coherences of commuting squares of pointed maps is the coherence of the commuting square
top-right ∘∗ top-left
A -----------------------------> C
| |
left | | right
∨ ∨
D -----------------------------> F
bottom-right ∘∗ bottom-left
obtained by concatenation of the following three pointed homotopies:
(bottom-right ∘∗ bottom-left) ∘∗ left
~∗ (bottom-right ∘∗ middle) ∘∗ top-left
~∗ bottom-right ∘∗ (middle ∘∗ top-left)
~∗ right ∘∗ (top-right ∘∗ top-left).
The first and third homotopy in this concatenation are the whiskerings of coherences of commuting triangles of pointed maps.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} {X : Pointed-Type l3} {Y : Pointed-Type l4} {U : Pointed-Type l5} {V : Pointed-Type l6} (top-left : A →∗ X) (top-right : X →∗ U) (left : A →∗ B) (middle : X →∗ Y) (right : U →∗ V) (bottom-left : B →∗ Y) (bottom-right : Y →∗ V) (left-square : coherence-square-pointed-maps top-left left middle bottom-left) (right-square : coherence-square-pointed-maps top-right middle right bottom-right) where horizontal-pasting-coherence-square-pointed-maps : coherence-square-pointed-maps ( top-right ∘∗ top-left) ( left) ( right) ( bottom-right ∘∗ bottom-left) horizontal-pasting-coherence-square-pointed-maps = concat-pointed-htpy ( left-whisker-comp-coherence-square-pointed-maps ( bottom-right) ( top-left) ( left) ( middle) ( bottom-left) ( left-square)) ( concat-pointed-htpy ( associative-comp-pointed-map bottom-right middle top-left) ( right-whisker-comp-coherence-square-pointed-maps ( top-right) ( middle) ( right) ( bottom-right) ( right-square) ( top-left)))
Vertical pasting of coherences of commuting squares of pointed maps
Consider two commuting squares of pointed maps, as in the diagram
top
A --------> B
| |
top-left | | top-right
∨ middle ∨
C --------> D
| |
bottom-left | | bottom-right
∨ ∨
E --------> F
bottom
with pointed homotopies
H : middle ∘∗ top-left ~∗ top-right ∘∗ top
K : bottom ∘∗ bottom-left ~∗ bottom-right ∘∗ middle.
The vertical pasting¶ of these coherences of commuting squares of pointed maps is the coherence of the commuting square
top
A --------> B
| |
bottom-left ∘∗ top-left | | bottom-right ∘∗ top-right
∨ ∨
E --------> F
bottom
obtained by concatenation of the following three pointed homotopies:
bottom ∘∗ (bottom-left ∘∗ top-left)
~∗ bottom-right ∘∗ (middle ∘∗ top-left)
~∗ (bottom-right ∘∗ middle) ∘∗ top-left
~∗ (bottom-right ∘∗ top-right) ∘∗ top.
The first and third homotopy in this concatenation are the whiskerings of coherences of commuting triangles of pointed maps.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} {C : Pointed-Type l3} {D : Pointed-Type l4} {E : Pointed-Type l5} {F : Pointed-Type l6} (top : A →∗ B) (top-left : A →∗ C) (top-right : B →∗ D) (middle : C →∗ D) (bottom-left : C →∗ E) (bottom-right : D →∗ F) (bottom : E →∗ F) (top-square : coherence-square-pointed-maps top top-left top-right middle) (bottom-square : coherence-square-pointed-maps middle bottom-left bottom-right bottom) where vertical-pasting-coherence-square-pointed-maps : coherence-square-pointed-maps ( top) ( bottom-left ∘∗ top-left) ( bottom-right ∘∗ top-right) ( bottom) vertical-pasting-coherence-square-pointed-maps = concat-pointed-htpy ( right-whisker-comp-coherence-square-pointed-maps ( middle) ( bottom-left) ( bottom-right) ( bottom) ( bottom-square) ( top-left)) ( concat-pointed-htpy ( inv-associative-comp-pointed-map bottom-right middle top-left) ( left-whisker-comp-coherence-square-pointed-maps ( bottom-right) ( top) ( top-left) ( top-right) ( middle) ( top-square)))
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-31. maybemabeline and Fredrik Bakke. Universal property of smash products (#865).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-05-16. Fredrik Bakke. Swap from
md
totext
code blocks (#622).