Total sequential diagrams of dependent sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-10.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.total-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.dependent-sequential-diagrams open import synthetic-homotopy-theory.equivalences-dependent-sequential-diagrams open import synthetic-homotopy-theory.equivalences-sequential-diagrams open import synthetic-homotopy-theory.functoriality-sequential-colimits open import synthetic-homotopy-theory.morphisms-sequential-diagrams open import synthetic-homotopy-theory.sequential-colimits open import synthetic-homotopy-theory.sequential-diagrams open import synthetic-homotopy-theory.universal-property-sequential-colimits
Idea
The
total diagram¶
of a
dependent sequential diagram
B : (A, a) → 𝒰
is the
sequential diagram
consisting of total spaces Σ Aₙ Bₙ
and
total maps.
Definitions
The total sequential diagram of a dependent sequential diagram
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where family-total-sequential-diagram : ℕ → UU (l1 ⊔ l2) family-total-sequential-diagram n = Σ (family-sequential-diagram A n) (family-dependent-sequential-diagram B n) map-total-sequential-diagram : (n : ℕ) → family-total-sequential-diagram n → family-total-sequential-diagram (succ-ℕ n) map-total-sequential-diagram n = map-Σ ( family-dependent-sequential-diagram B (succ-ℕ n)) ( map-sequential-diagram A n) ( map-dependent-sequential-diagram B n) total-sequential-diagram : sequential-diagram (l1 ⊔ l2) pr1 total-sequential-diagram = family-total-sequential-diagram pr2 total-sequential-diagram = map-total-sequential-diagram
The projection morphism onto the base of the total sequential diagram
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where pr1-total-sequential-diagram : hom-sequential-diagram ( total-sequential-diagram B) ( A) pr1 pr1-total-sequential-diagram n = pr1 pr2 pr1-total-sequential-diagram n = refl-htpy
The induced projection map on sequential colimits
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) {X : UU l3} {c : cocone-sequential-diagram (total-sequential-diagram B) X} (up-c : universal-property-sequential-colimit c) {Y : UU l4} (c' : cocone-sequential-diagram A Y) where pr1-sequential-colimit-total-sequential-diagram : X → Y pr1-sequential-colimit-total-sequential-diagram = map-sequential-colimit-hom-sequential-diagram ( up-c) ( c') ( pr1-total-sequential-diagram B)
The induced projection map on standard sequential colimits
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) where pr1-standard-sequential-colimit-total-sequential-diagram : standard-sequential-colimit (total-sequential-diagram B) → standard-sequential-colimit A pr1-standard-sequential-colimit-total-sequential-diagram = map-hom-standard-sequential-colimit A ( pr1-total-sequential-diagram B)
Properties
Equivalences of dependent sequential diagrams induce equivalences on the total sequential diagrams
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) (C : dependent-sequential-diagram A l3) (e : equiv-dependent-sequential-diagram B C) where equiv-total-sequential-diagram-equiv-dependent-sequential-diagram : equiv-sequential-diagram ( total-sequential-diagram B) ( total-sequential-diagram C) pr1 equiv-total-sequential-diagram-equiv-dependent-sequential-diagram n = equiv-tot (equiv-equiv-dependent-sequential-diagram C e n) pr2 equiv-total-sequential-diagram-equiv-dependent-sequential-diagram n = coherence-square-maps-Σ ( family-dependent-sequential-diagram C (succ-ℕ n)) ( map-dependent-sequential-diagram B n) ( map-equiv-dependent-sequential-diagram C e n) ( map-equiv-dependent-sequential-diagram C e (succ-ℕ n)) ( map-dependent-sequential-diagram C n) { refl-htpy} ( λ a → inv-htpy (coh-equiv-dependent-sequential-diagram C e n a))
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).
- 2024-04-10. Vojtěch Štěpančík. Shifts and unshifts of concepts around sequential colimits (#1070).