Dirichlet products of species of types
Content created by Egbert Rijke and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2023-05-25.
module species.dirichlet-products-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.product-decompositions open import foundation.universe-levels open import species.species-of-types
Idea
The Dirichlet product of two species of types S
and T
on X
is defined as
Σ (k : UU) (Σ (k' : UU) (Σ (e : k × k' ≃ X) S(k) × T(k')))
Definition
module _ {l1 l2 l3 : Level} (S : species-types l1 l2) (T : species-types l1 l3) where dirichlet-product-species-types : species-types l1 (lsuc l1 ⊔ l2 ⊔ l3) dirichlet-product-species-types X = Σ ( binary-product-Decomposition l1 l1 X) ( λ d → S (left-summand-binary-product-Decomposition d) × T (right-summand-binary-product-Decomposition d))
Recent changes
- 2023-05-25. Victor Blanchi and Egbert Rijke. Dirichlet exponential of species (of types and of types in a subuniverse) (#628).