Whiskering identifications with respect to concatenation
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2024-02-06.
Last modified on 2024-02-19.
module foundation.whiskering-identifications-concatenation where open import foundation-core.whiskering-identifications-concatenation public
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import foundation.whiskering-operations open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies
Idea
Consider two identifications p q : x = y
in a type A
. The whiskering operations are operations that take
identifications p = q
to identifications r ∙ p = r ∙ q
or to
identifications p ∙ r = q ∙ r
.
The
left whiskering¶
operation takes an identification r : z = x
and an identification p = q
to
an identification r ∙ p = r ∙ q
. Similarly, the
right whiskering¶
operation takes an identification r : y = z
and an identification p = q
to
an identification p ∙ r = q ∙ r
.
The whiskering operations can be defined by the acion on identifications of concatenation. Since concatenation on either side is an equivalence, it follows that the whiskering operations are equivalences.
Properties
Left whiskering of identifications is an equivalence
module _ {l : Level} {A : UU l} {x y z : A} (p : x = y) {q q' : y = z} where is-equiv-left-whisker-concat : is-equiv (left-whisker-concat p {q} {q'}) is-equiv-left-whisker-concat = is-emb-is-equiv (is-equiv-concat p z) q q' equiv-left-whisker-concat : (q = q') ≃ (p ∙ q = p ∙ q') pr1 equiv-left-whisker-concat = left-whisker-concat p pr2 equiv-left-whisker-concat = is-equiv-left-whisker-concat
Right whiskering of identification is an equivalence
module _ {l : Level} {A : UU l} {x y z : A} {p p' : x = y} (q : y = z) where is-equiv-right-whisker-concat : is-equiv (λ (α : p = p') → right-whisker-concat α q) is-equiv-right-whisker-concat = is-emb-is-equiv (is-equiv-concat' x q) p p' equiv-right-whisker-concat : (p = p') ≃ (p ∙ q = p' ∙ q) pr1 equiv-right-whisker-concat α = right-whisker-concat α q pr2 equiv-right-whisker-concat = is-equiv-right-whisker-concat
Recent changes
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).